Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H.T. Wan is active.

Publication


Featured researches published by H.T. Wan.


Spermatogenesis | 2011

Endocrine disrupting chemicals: Multiple effects on testicular signaling and spermatogenesis

Bonnie H. Y. Yeung; H.T. Wan; Alice Y.S. Law; Chris K.C. Wong

In the past 200 years, an enormous number of synthetic chemicals with diverse structural features have been produced for industrial, medical and domestic purposes. These chemicals, originally thought to have little or no biological toxicity, are widely used in our daily lives and commonly present in foods. It was not until the first World Wildlife Federation Wingspread Conference held in 1994 that concerns about the endocrine disrupting (ED) effects of these chemicals were articulated. The potential hazardous effects of endocrine disrupting chemicals (EDCs) on human health and ecological well-being are one of the global concerns that affect the health and propagation of human beings. Considerable numbers of studies indicated that endocrine disruption is linked to “the developmental basis of adult disease”, highlighting the significant effects of EDC exposure on a developing organism, leading to the propensity of an individual to develop a disease or dysfunction in later life. In this review, we intend to provide environmental, epidemiological and experimental data to associate pollutant exposure with reproductive disorders, in particular on the development and function of the male reproductive system. Possible effects of pollutant exposure on the processes of embryonic development, like sex determination and masculinization are described. In addition, the effects of pollutant exposure on hypothalamus-pituitary-gonadal axis, testicular signaling, steroidogenesis and spermatogenesis are also discussed.


Chemosphere | 2011

Risk assessment for human consumption of perfluorinated compound-contaminated freshwater and marine fish from Hong Kong and Xiamen.

Yin G. Zhao; H.T. Wan; Alice Y.S. Law; X. Wei; Ye Q. Huang; John P. Giesy; M.H. Wong; Chris K.C. Wong

Perfluorinated compounds (PFCs) are man-made fluoro-surfactants that are identified as global pollutants and can pose health risks to humans and wildlife. Two aspects of risk assessment were conducted in this study, including exposure and response. Exposure was estimated by using the concentrations of PFCs in fish and applying standard exposure factors. Among different PFCs, PFOS, PFOA, PFNA, PFDA, PFUdA and PFTrDA were detected. Total concentrations of PFC in fish ranged from 0.27-8.4 ng g(-1) to 0.37-8.7 ng g(-1) respectively in Hong Kong and Xiamen. The calculated hazard ratio (HR) of PFOS for all fish was less than 1.0. However, the HR for mandarin fish in Hong Kong and bighead carp, grass carp and tilapia in Xiamen, had HR values of approximately 0.5, indicating that frequent consumption of these 4 more contaminated fish species might pose an unacceptable risk to human health. Our data support the notion that the released/disposed chemical pollutants into water systems make fish a source of environmental toxicants to humans. The risks and potential effects of PFCs to health of coastal population in the Pearl River Delta are of concern.


Journal of Hazardous Materials | 2013

Blood plasma concentrations of endocrine disrupting chemicals in Hong Kong populations

H.T. Wan; P.Y. Leung; Y.G. Zhao; X. Wei; Ming Hung Wong; Chris K.C. Wong

In this study we report the human plasma concentrations of some common endocrine disrupting chemicals (EDCs) in the Hong Kong population. We have analyzed 153 plasma samples for the contaminants by methods involving labeled standards spiked into the samples. Quantification was performed using high performance liquid chromatography tandem mass spectrometry for bisphenol-A (BPA) and perfluorinated compounds (PFCs), and gas chromatography mass spectrometry methods for phthalates. We found BPA, several types of PFCs and phthalates in over 90% of the plasma samples. Perfluorooctane sulfonate (PFOS) was the dominant PFC, followed by perfluroroctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS). Eight out of ten phthalates were detected, with bis(2-ethylhexyl) phthalate (DEHP) as the most abundant, followed by bis(2-methoxyethyl) phthalate (DMEP) and dioctyl phthalate (DnOP). The levels of PFOS, PFOA, PFHxS and perfluorohexanoic acid (PFHxA) were significantly higher in the male plasma samples (p<0.05), while the mean plasma levels of DEHP and n-butyl benzyl phthalate (BBP) were significantly higher in the young age group (p<0.02). The presence of the selected EDCs in human blood plasma indicates common exposure routes among different population cohorts. Although the plasma levels of the EDCs were comparable to other countries, regular monitoring of human blood EDC contamination levels is necessary to provide a time-trend database for the estimation of exposure risk and to formulate appropriate public health policy.


Biochimica et Biophysica Acta | 2012

PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport.

H.T. Wan; Y.G. Zhao; X. Wei; K.Y. Hui; John P. Giesy; Chris K.C. Wong

BACKGROUND Perfluorooctane sulfonate (PFOS) was produced by various industries and was widely used in diverse consumer products. Human sample analysis indicated PFOS contamination in body fluids. Animal studies revealed that PFOS tends to accumulate in livers and is able to induce hepatomegaly. However the underlying mechanism of PFOS-elicited hepatotoxicity has not yet been fully addressed. The objective of this study is to identify the cellular target of PFOS and to reveal the mechanisms of PFOS-induced toxicity. METHODS In this study, mature 8-week old male CD-1 mice were administered 0, 1, 5 or 10 mg/kg/day PFOS for 3, 7, 14 or 21 days. Histological analysis of liver sections, and biochemical/molecular analysis of biomarkers for hepatic lipid metabolism were assessed. RESULTS PFOS-induced steatosis was observed in a time- and dose-dependent manner. The gene expression levels of fatty acid translocase (FAT/CD36) and lipoprotein lipase (Lpl) were significantly increased by 10 and/or 5 mg/kg PFOS. Serum levels of very-low density lipoprotein were decreased by 14 days of PFOS exposure (p<0.05). The rate of mitochondrial β-oxidation was also found to be significantly reduced, leading to the restriction of fatty acid oxidation for energy production. CONCLUSION Taken together, the disturbance of lipid metabolism leads to the accumulation of excessive fatty acids and triglycerides in hepatocytes. GENERAL SIGNIFICANCE Since PFOS-elicited pathological manifestation resembles one of the most common human liver diseases-nonalcoholic fatty liver disease, environmental exposure to PFOS may attribute to the disease progression.


Biology of Reproduction | 2011

Testicular Signaling Is the Potential Target of Perfluorooctanesulfonate-Mediated Subfertility in Male Mice

H.T. Wan; Y.G. Zhao; Ming Hung Wong; Kai-Fai Lee; William S.B. Yeung; John P. Giesy; Chris K.C. Wong

Perfluorooctanesulfonate (PFOS) was produced and used by various industries and in consumer products. Because of its persistence, it is ubiquitous in air, water, soil, wildlife, and humans. Although the adverse effects of PFOS on male fertility have been reported, the underlying mechanisms have not yet been elucidated. Here, for the first time, the effects of PFOS on testicular signaling, such as gonadotropin, growth hormone, insulin-like growth factor, and inhibins/activins were shown to be directly related to male subfertility. Sexually mature 8-wk-old CD1 male mice were administered by gavages in corn oil daily with 0, 1, 5, or 10 mg/kg PFOS for 7, 14, or 21 days. Serum concentrations of testosterone and epididymal sperm counts were significantly lower in the mice after 21 days of the exposure to the highest dose compared with the controls. The expression levels of testicular receptors for gonadotropin, growth hormone, and insulin-like growth factor 1 were considerably reduced on Day 21 in mice exposed daily to 10 or 5 mg/kg PFOS. The transcript levels of the subunits of the testicular factors (i.e., inhibins and activins), Inha, Inhba, and Inhbb, were significantly lower on Day 21 of daily exposure to 10, 5, or 1 mg/kg PFOS. The mRNA expression levels of steroidogenic enzymes (i.e., StAR, CYP11A1, CYP17A1, 3beta-HSD, and 17beta-HSD) were notably reduced. Therefore, PFOS-elicited subfertility in male mice is manifested as progressive deterioration of testicular signaling.


PLOS ONE | 2014

Perinatal Exposure to Perfluorooctane Sulfonate Affects Glucose Metabolism in Adult Offspring

H.T. Wan; Yin G. Zhao; Pik Y. Leung; Chris K.C. Wong

Perfluoroalkyl acids (PFAAs) are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS) is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0) were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21). To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders.


Experimental Cell Research | 2008

Histone deacetylase inhibitor-induced cellular apoptosis involves stanniocalcin-1 activation

Alice Yu Sheung Law; Keng Po Lai; W.C. Lui; H.T. Wan; Chris K.C. Wong

Our previous studies have demonstrated the involvement of HIF-1 and p53 in the regulation of stanniocalcin-1 (STC1) gene transcription in human cancer cells. In this study, we reported that the treatment of human colon adenoma HT29 cells with a histone deacetylase (HDAC) inhibitor (i.e. trichostatin A, TSA) induced both cellular apoptosis and STC1 expression. The activation of STC1 expression was also observed in other TSA-treated human cancer cells (i.e. SKOV3, CaCo-2, Jurkat and CNE-2 cells). STC1 mRNA was rapidly induced within 4 h in TSA-treated HT29 cells, and was found to be transcriptionally regulated and was independent of new protein synthesis as revealed by ActD and CHX treatment respectively. The induction was correlated with increased cellular levels of acetyl histone H3 and H4 and acetyl NFkappaB. Chromatin immunoprecipitation (ChIP) assay showed the increased binding of acetyl histone H3 and H4 to STC1 promoter in the TSA-treated cells. A cotreatment of HT29 cells with a NFkappaB inhibitor (parthenolide) significantly inhibited the TSA-induced cellular levels of acetyl NFkappaB p65 and abolished the stimulation of STC1 gene expression. ChIP assay also demonstrated that TSA treatment increased while TSA/parthenolide cotreatment decreased NFkappaB p65 binding to STC1 gene promoter. In the STC1-luciferase promoter construct (1 kb) study, the data implied that the promoter can be activated by TSA treatment. Interestingly, the promoter region contains 2 putative NFkappaB binding sites. Consistent with the STC1mRNA expression data, TSA/parthenolide cotreatment also significantly inhibited the TSA-induced STC1 promoter-driven luciferase activity. Importantly, TSA-induced apoptotic process was found to be significantly reduced by the silencing of STC1 expression. This is the first study to show that histone hyper-acetylation and the recruitment of activated NFkappaB stimulated STC1 gene expression. In addition, our results support the notion that STC1 is a pro-apoptotic factor.


Biology Open | 2013

Early embryogenesis in zebrafish is affected by bisphenol A exposure

William Ka Fai Tse; Bonnie H. Y. Yeung; H.T. Wan; Chris K.C. Wong

Summary Exposure of a developing embryo or fetus to endocrine disrupting chemicals (EDCs) has been hypothesized to increase the propensity of an individual to develop a disease or dysfunction in his/her later life. Although it is important to understand the effects of EDCs on early development in animals, sufficient information about these effects is not available thus far. This is probably because of the technical difficulties in tracing the continuous developmental changes at different stages of mammalian embryos. The zebrafish, an excellent model currently used in developmental biology, provides new insights to the field of toxicological studies. We used the standard whole-mount in situ hybridization screening protocol to determine the early developmental defects in zebrafish embryos exposed to the ubiquitous pollutant, bisphenol A (BPA). Three stages (60–75% epiboly, 8–10 somite, and prim-5) were selected for in situ screening of different molecular markers, whereas BPA exposure altered early dorsoventral (DV) patterning, segmentation, and brain development in zebrafish embryos within 24 hours of exposure.


Marine Pollution Bulletin | 2014

Partitioning behavior of perfluorinated compounds between sediment and biota in the Pearl River Delta of South China

Y.G. Zhao; H.T. Wan; M.H. Wong; Chris K.C. Wong

Surface sediment and biota were collected from 12 sampling sites - seven along the Pearl River Delta and five along the Hong Kong coastline. Perfluorinated compound (PFC) concentrations were detected using a high-performance-liquid-chromatogram-tandem-mass-spectrometry system. Analytical results indicated that the total PFC concentrations were in the range of 0.15-3.11 ng/g dry weight in sediments, while the total PFC concentrations in oyster and mussel samples were between 0.46-1.96 and 0.66-3.43 ng/g wet weight, respectively. The major types of PFCs detected in the sediment samples were perfluorooctanesulfonic acid (PFOS) and perfluorobutanoic acid (PFBA), with concentrations ranging from low limits of quantification to 0.86±0.12 ng/g dry weight and 1.50±0.26 ng/g dry weight, respectively. In bivalve samples, PFOS was the dominant contaminant with concentrations ranging from 0.25±0.09 to 0.83±0.12 ng/g wet weight in oysters and 0.41±0.14 to 1.47±0.25 ng/g wet weight in mussels. An increase in PFC concentration was found to be correlated with increased human population density in the study areas.


Environmental Science & Technology | 2017

Effects of in Utero PFOS Exposure on Transcriptome, Lipidome, and Function of Mouse Testis

Keng Po Lai; Jetty Chung-Yung Lee; H.T. Wan; Jing-Woei Li; Aman Yi-Man Wong; Ting-Fung Chan; Camille Oger; Jean-Marie Galano; Thierry Durand; Kin Sum Leung; Cherry C Leung; Rong Li; Chris K.C. Wong

Transcriptomic and LC-MS/MS-based targeted lipidomic analyses were conducted to identify the effects of in utero PFOS exposure on neonatal testes and its relation to testicular dysfunction in adult offspring. Pregnant mice were orally administered 0.3 and 3 μg PFOS/g body weight until term. Neonatal testes (P1) were collected for the detection of PFOS, and were subjected to omics study. Integrated pathway analyses using DAVID, KEGG, and IPA underlined the effects of PFOS exposure on lipid metabolism, oxidative stress and cell junction signaling in testes. LC-MS/MS analysis showed that the levels of adrenic acid and docosahexaenoic acid (DHA) in testes were significantly reduced in the PFOS treatment groups. A significant linear decreasing trend in eicosapentaenoic acid and DHA with PFOS concentrations was observed. Moreover, LOX-mediated 5-hydroxyeicosatetraenoic acids (HETE) and 15-HETE from arachidonic acid in the testes were significantly elevated and a linear increasing trend of 15-HETE concentrations was detected with doses of PFOS. The perturbations of lipid mediators suggested that PFOS has potential negative impacts on testicular functions. Postnatal analysis of male offspring at P63 showed significant reductions in serum testosterone and epididymal sperm count. This study sheds light into the as yet unrevealed action of PFOS on lipid mediators in affecting testicular functions.

Collaboration


Dive into the H.T. Wan's collaboration.

Top Co-Authors

Avatar

Chris K.C. Wong

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Y.G. Zhao

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Keng Po Lai

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

John P. Giesy

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

M.H. Wong

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Rong Li

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

X. Wei

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Alice Hoi-Man Ng

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Alice Y.S. Law

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Aman Yi-Man Wong

Hong Kong Baptist University

View shared research outputs
Researchain Logo
Decentralizing Knowledge