Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Ten Kate is active.

Publication


Featured researches published by H. Ten Kate.


Journal of Cosmology and Astroparticle Physics | 2011

Towards a new generation axion helioscope

I.G. Irastorza; Frank T. Avignone; S. Caspi; J. M. Carmona; T. Dafni; Martyn Davenport; A. Dudarev; G. Fanourakis; E. Ferrer-Ribas; J. Galán; J.A. García; T. Geralis; I. Giomataris; Haley Louise Gomez; D. H. H. Hoffmann; F. J. Iguaz; K. Jakovčić; M. Krcmar; B. Lakic; G. Luzón; M. Pivovaroff; T. Papaevangelou; Georg G. Raffelt; Javier Redondo; A. Rodríguez; S. Russenschuck; J. Ruz; I. Shilon; H. Ten Kate; A. Tomás

We study the feasibility of a new generation axion helioscope, the most ambitious and promising detector of solar axions to date. We show that large improvements in magnetic field volume, x-ray focusing optics and detector backgrounds are possible beyond those achieved in the CERN Axion Solar Telescope (CAST). For hadronic models, a sensitivity to the axion-photon coupling of gaγ few × 10−12 GeV−1 is conceivable, 1–1.5 orders of magnitude beyond the CAST sensitivity. If axions also couple to electrons, the Sun produces a larger flux for the same value of the Peccei-Quinn scale, allowing one to probe a broader class of models. Except for the axion dark matter searches, this experiment will be the most sensitive axion search ever, reaching or surpassing the stringent bounds from SN1987A and possibly testing the axion interpretation of anomalous white-dwarf cooling that predicts ma of a few meV. Beyond axions, this new instrument will probe entirely unexplored ranges of parameters for a large variety of axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics.


Journal of Instrumentation | 2014

Conceptual design of the International Axion Observatory (IAXO)

E. Armengaud; Frank T. Avignone; M. Betz; Ph. Brax; P. Brun; G. Cantatore; J. M. Carmona; G.P. Carosi; Fritz Caspers; S. Caspi; S. A. Cetin; D. Chelouche; Finn Erland Christensen; A. Dael; T. Dafni; Martyn Davenport; A.V. Derbin; K. Desch; A. Diago; B Dobrich; I. Dratchnev; A. Dudarev; C. Eleftheriadis; G. Fanourakis; E. Ferrer-Ribas; J. Galán; J.A. García; J. G. Garza; T. Geralis; B. Gimeno

The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4–5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few × 10−12 GeV−1 and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling gae with sensitivity — for the first time — to values of gae not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, which follows the layout of an enhanced axion helioscope, based on a purpose-built 20 m-long 8-coils toroidal superconducting magnet. All the eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able to focus the signal photons into ~ 0.2 cm2 spots that are imaged by ultra-low-background Micromegas x-ray detectors. The magnet is built into a structure with elevation and azimuth drives that will allow for solar tracking for ~ 12 h each day.


IEEE Transactions on Applied Superconductivity | 2014

New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

E. Ravaioli; V. I. Datskov; C. Giloux; G. Kirby; H. Ten Kate; Arjan Verweij

A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQXC magnet developed with Cadence PSpice. The calculated voltages and currents are in good agreement with the measured data. Simulation and test results show that this new protection system, called coupling-loss induced quench, is a feasible method to reduce the hot-spot temperature in high-field superconducting magnets, even more when used in combination with conventional quench heaters.


Superconductor Science and Technology | 2014

A new hybrid protection system for high-field superconducting magnets

E. Ravaioli; V. I. Datskov; G. Kirby; H. Ten Kate; Arjan Verweij

The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A new protection system for superconducting magnets is presented, comprising a combination of a novel coupling-loss induced quench (CLIQ) system and conventional quench heaters. CLIQ can provoke a very fast transition to the normal state in coil windings by introducing coupling loss and thus heat in the coils conductor. The advantage of the hybrid protection system is a global transition, resulting in a much faster current decay, a significantly lower hot-spot temperature, and a more homogeneous temperature distribution in the magnets coil.


IEEE Transactions on Applied Superconductivity | 2015

Protecting a full-scale Nb3Sn magnet with CLIQ, the new coupling-loss-induced quench system

E. Ravaioli; H. Bajas; V. I. Datskov; V. Desbiolles; J. Feuvrier; G. Kirby; M. Maciejewski; G. Sabbi; H. Ten Kate; Arjan Verweij

A new protection system for superconducting magnets called coupling-loss induced quench system (CLIQ) has been recently developed at CERN. Recent tests on Nb-Ti coils have shown that CLIQ is a valid, efficient, and promising method for the protection of high-magnetic-field superconducting magnets. However, the protection of new-generation Nb3Sn accelerator magnets is even more challenging due to the much higher stored energy per unit volume and to the significantly larger enthalpy needed to initiate and propagate a normal zone in such coils. Now, the CLIQ system is tested for the first time on a Nb3Sn magnet in the CERN magnet test facility in order to investigate its performance in practice, thereby validating the method for this type of superconducting magnets as well. Furthermore, we successfully reproduced the electrothermal transients during a CLIQ discharge. Finally, the implementation of various CLIQ-based protection schemes for the full-scale Nb3Sn quadrupole magnet for the LHC high luminosity upgrade is discussed. The impact of key system parameters on CLIQ performance and the advantages and drawbacks of using multiple CLIQ units on a single magnet are discussed.


IEEE Transactions on Applied Superconductivity | 2010

Conceptual Design of the 45 T Hybrid Magnet at the Nijmegen High Field Magnet Laboratory

S.A.J. Wiegers; A. den Ouden; J. Rook; Jos A. A. J. Perenboom; H. Ten Kate; M. D. Bird; A. Bonito-Oliva; J.C. Maan

A 45 T Hybrid Magnet System is being developed at the Nijmegen High Field Magnet Laboratory as part of the Nijmegen Center for Advanced Spectroscopy. The 45 T Hybrid Magnet System will be used in combination with far-infra-red light produced by a Free Electron Laser under construction directly adjacent to the High Field Magnet Laboratory. The superconducting outsert magnet will consist of three CICC coils wound on a single coil form, using strands. A test program for strand and cable qualification is underway. The CICC will carry 13 kA and the coils will produce 12 T on axis field in a 600 mm warm bore. The nominal operating temperature will be 4.5 K maintained with forced-flow supercritical helium. The insert magnet will produce 33 T at 40 kA in a 32 mm bore consuming 20 MW, and will consist of four coils. The insert magnet will be galvanically and mechanically isolated from the outsert magnet. Complete system availability for users is expected in 2014. In this paper we will report on the conceptual design of the 45 T Hybrid Magnet System.


IEEE Transactions on Applied Superconductivity | 2000

The helium cryogenic system for the ATLAS experiment

N. Delruelle; F. Haug; G. Passardi; H. Ten Kate

The magnetic configuration of the ATLAS detector is generated by an inner superconducting solenoid and three air-core toroids (the barrel and two end-caps), each of them made of eight superconducting coils. Two separated helium refrigerators will be used to allow cool-down from ambient temperature and steady-state operation at 4.5 K of all the magnets having a total cold mass of about 600 tons. In comparison with the preliminary design, the helium distribution scheme and interface with the magnet sub-systems are simplified, resulting in a considerable improvement of the operational easiness and the overall reliability of the system at some expense of the operational flexibility. The paper presents the cryogenic layout and the basic principles for magnets cooldown, steady state operation and thermal recovery after a fast energy dump.


IEEE Transactions on Applied Superconductivity | 2015

Study of a 5 T Research Dipole Insert-Magnet Using an Anisotropic ReBCO Roebel Cable

J. van Nugteren; G. Kirby; G. de Rijk; L. Rossi; H. Ten Kate; Marc M.J. Dhalle

A design study is presented for the coil layout of the EUCARD-2 Five Tesla HTS Research (FeaTHeR) magnet. The angular dependence of the critical current in the used ReBCO Roebel cable is taken into account. This leads to a new coil layout named aligned block. This layout makes optimal use of the anisotropy of the ReBCO coated conductor, by aligning all tapes with the magnetic field lines. Both two-dimensional cross sections and three-dimensional coil layouts are presented. In the layouts the magnetic field angle is highest at the edges of the cable causing a large variation of the critical current over its width. Different approaches to the calculation of the critical current, with and without current sharing in and between the tapes, are presented. The values are compared to the values found using a non-linear network model of the cable, in which the electrical properties of the elements are calculated as a function of magnetic field and magnetic field angle. The model also includes electrical contact between the strands using additional network elements.


IEEE Transactions on Applied Superconductivity | 2013

Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory

I. Shilon; A. Dudarev; Helder Pais Da Silva; H. Ten Kate

The International AXion Observatory (IAXO) will incorporate a new generation detector for axions, a hypothetical particle, which was postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new IAXO experiment is aiming at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current state-of-the-art detector, represented by the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into x-ray photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large superconducting toroidal magnet is currently being designed at CERN to provide the required magnetic field. The new toroid will be built up from eight, one meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in diameter and 22 m in length. It is designed to realize a peak magnetic field of 5.4 T with a stored energy of 500 MJ. The magnetic field optimization process to arrive at maximum detector yield is described. In addition, force and stress calculations are performed to select materials and determine their structure and sizing. Conductor dimensionality, quench protection and the cryogenic design are dealt with as well.


IEEE Transactions on Applied Superconductivity | 2016

First Implementation of the CLIQ Quench Protection System on a 14-m-Long Full-Scale LHC Dipole Magnet

E. Ravaioli; V. I. Datskov; G. Dib; A. M. Fernandez Navarro; G. Kirby; M. Maciejewski; H. Ten Kate; Arjan Verweij; G. Willering

The coupling-loss-induced quench (CLIQ) is an innovative system for the protection of superconducting magnets. Its energy-deposition mechanism, based on coupling loss generated directly in the superconductor, is fundamentally faster than heat diffusion, upon which traditional quench-heater-based systems rely. CLIQ electrical design relies on simple and robust components, i.e., easy to install and be replaced in case of damage. After being successfully tested on model magnets of different geometries and types of superconductor, CLIQ is now applied for the first time for the protection of a full-scale dipole magnet. For this purpose, a 14-m-long LHC twin-aperture dipole magnet is equipped with CLIQ terminals and two 80-mF 500-V CLIQ units are connected to its windings. Experimental results obtained under various operating conditions convincingly show that a CLIQ-based quench protection system can effectively protect large-scale magnets by quickly and homogeneously transferring to the normal-state voluminous regions of the winding packs. A developed dedicated simulation code correctly reproduces the complex electrothermal transient occurring during a CLIQ discharge. The successful test completes the development program of CLIQ quench protection systems, which has convincingly demonstrated the maturity and readiness of the system for application in large-scale magnet systems.

Collaboration


Dive into the H. Ten Kate's collaboration.

Researchain Logo
Decentralizing Knowledge