H. Th. Jongen
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Th. Jongen.
Mathematical Programming | 1986
H. Th. Jongen; P. Jonker; F. Twilt
We deal with one-parameter families of optimization problems in finite dimensions. The constraints are both of equality and inequality type. The concept of a ‘generalized critical point’ (g.c. point) is introduced. In particular, every local minimum, Kuhn-Tucker point, and point of Fritz John type is a g.c. point. Under fairly weak (even generic) conditions we study the set∑ consisting of all g.c. points. Due to the parameter, the set∑ is pieced together from one-dimensional manifolds. The points of∑ can be divided into five (characteristic) types. The subset of ‘nondegenerate critical points’ (first type) is open and dense in∑ (nondegenerate means: strict complementarity, nondegeneracy of the corresponding quadratic form and linear independence of the gradients of binding constraints). A nondegenerate critical point is completely characterized by means of four indices. The change of these indices along∑ is presented. Finally, the Kuhn-Tucker subset of∑ is studied in more detail, in particular in connection with the (failure of the) Mangasarian-Fromowitz constraint qualification.
Mathematical Programming | 1998
H. Th. Jongen; Jan.-J. Rückmann; Oliver Stein
We consider a generalized semi-infinite optimization problem (GSIP) of the form (GSIP) min{f(x)‖xεM}, where M={x∈ℝn|hi(x)=0i=l,...m, G(x,y)⩾0, y∈Y(x)} and all appearing functions are continuously differentiable. Furthermore, we assume that the setY(x) is compact for allx under consideration and the set-valued mappingY(.) is upper semi-continuous. The difference with a standard semi-infinite problem lies in thex-dependence of the index setY. We prove a first order necessary optimality condition of Fritz John type without assuming a constraint qualification or any kind of reduction approach. Moreover, we discuss some geometrical properties of the feasible setM.
Journal of Global Optimization | 1991
H. Th. Jongen; Gerhard-Wilhelm Weber
We study global stability properties for differentiable optimization problems of the type:% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaai% ikaGqaaiaa-jzacaGGSaGaamisaiaacYcacaqGGaGaam4raiaacMca% caGG6aGaaeiiaiaab2eacaqGPbGaaeOBaiaabccacaWFsgGaaeikai% aadIhacaqGPaGaaeiiaiaab+gacaqGUbGaaeiiaiaad2eacaGGBbGa% amisaiaacYcacaWGhbGaaiyxaiabg2da9iaacUhacaWG4bGaeyicI4% CeeuuDJXwAKbsr4rNCHbacfaGae4xhHe6aaWbaaSqabeaacaWGUbaa% aOGaaiiFaiaabccacaWGibGaaiikaiaadIhacaGGPaGaeyypa0JaaG% imaiaacYcacaqGGaGaam4raiaacIcacaWG4bGaaiykamaamaaabaGa% eyyzImlaaiaaicdacaGG9bGaaiOlaaaa!6B2E!\[P(f,H,{\text{ }}G):{\text{ Min }}f{\text{(}}x{\text{) on }}M[H,G] = \{ x \in \mathbb{R}^n |{\text{ }}H(x) = 0,{\text{ }}G(x)\underline \geqslant 0\} .\]Two problems are called equivalent if each lower level set of one problem is mapped homeomorphically onto a corresponding lower level set of the other one. In case that P(% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaaceWFsg% GbaGaacaWFSaGaa8hiaiqadIeagaacaiaacYcacaWFGaGabm4rayaa% iaaaaa!3EBF!\[\tilde f, \tilde H, \tilde G\]) is equivalent with P(f, H, GG) for all (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaaceWFsg% GbaGaacaWFSaGaa8hiaiqadIeagaacaiaacYcacaWFGaGabm4rayaa% iaaaaa!3EBF!\[\tilde f, \tilde H, \tilde G\]) in some neighbourhood of (f, H, G) we call P(f, H, G) structurally stable; the topology used takes derivatives up to order two into account. Under the assumption that M[H, G] is compact we prove that structural stability of P(f, H, GG) is equivalent with the validity of the following three conditions:C.1.The Mangasarian-Fromovitz constraint qualification is satisfied at every point of M[H, G].C.2.Every Kuhn-Tucker point of P(f, H, GG) is strongly stable in the sense of Kojima.C.3.Different Kuhn-Tucker points have different (f-)values.
Mathematical Programming | 1990
H. Th. Jongen; Diethard Klatte; K. Tammer
AbstractWe consider the spaceL(D) consisting of Lipschitz continuous mappings fromD to the Euclideann-space ℝn,D being an open bounded subset of ℝn. LetF belong toL(D) and suppose that
Optimization | 1988
H. Th. Jongen; Diethard Pallaschke
Optimization | 1987
H. Th. Jongen; W. Wetterling; G. Zwier
\bar x
Siam Journal on Optimization | 1997
H. Th. Jongen; Oliver Stein
Optimization | 2001
Andreas Jess; H. Th. Jongen; Luka Neralić; Oliver Stein
solves the equationF(x) = 0. In case that the generalized Jacobian ofF at
Mathematical Programming | 1994
Ryuichi Hirabayashi; H. Th. Jongen; M. Shida
Optimization | 1987
J. Guddat; H. Th. Jongen
\bar x