Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. van der Kooij is active.

Publication


Featured researches published by H. van der Kooij.


The International Journal of Robotics Research | 2006

A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots

Jan F. Veneman; R. Ekkelenkamp; R. Kruidhof; F.C.T. van der Helm; H. van der Kooij

Within the context of impedance controlled exoskeletons, common actuators have important drawbacks. Either the actuators are heavy, have a complex structure or are poor torque sources, due to gearing or heavy nonlinearity. Considering our application, an impedance controlled gait rehabilitation robot for treadmill-training, we designed an actuation system that might avoid these drawbacks. It combines a lightweight joint and a simple structure with adequate torque source quality. It consists of a servomotor, a flexible Bowden cable transmission, and a force feedback loop based on a series elastic element. A basic model was developed that is shown to describe the basic dynamics of the actuator well enough for design purpose. Further measurements show that performance is sufficient for use in a gait rehabilitation robot. The demanded force tracking bandwidths were met: 11 Hz bandwidth for the full force range (demanded 4 Hz) and 20 Hz bandwidth for smaller force range (demanded 12 Hz). The mechanical output impedance of the actuator could be reduced to hardly perceptible level. Maxima of about 0.7 Nm peaks for 4 Hz imposed motions appeared, corresponding to less than 2.5% of the maximal force output. These peaks were caused by the stick friction in the Bowden cables. Spring stiffness variation showed that both a too stiff and a too compliant spring can worsen performance. A stiff spring reduces the maximum allowable controller gain. The relatively low control gain then causes a larger effect of stick in the force output, resulting in a less smooth output in general. Low spring stiffness, on the other side, decreases the performance of the system, because saturation will occur sooner.


IEEE Transactions on Robotics | 2009

Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations

Arno H. A. Stienen; Edsko E.G. Hekman; F.C.T. van der Helm; H. van der Kooij

To automatically align exoskeleton axes to human anatomical axes, we propose to decouple the joint rotations from the joint translations. Decoupling can reduce setup times and painful misalignment forces, at the cost of increased mechanical complexity and movement inertia. The decoupling approach was applied to the Dampace and Limpact exoskeletons.


intelligent robots and systems | 2007

Passive and accurate torque control of series elastic actuators

Heike Vallery; R. Ekkelenkamp; H. van der Kooij; Martin Buss

The principle of series elastic actuation offers considerable advantages for haptic displays compared to stiff actuators. The interaction force between motor and load is directly proportional to their relative position, which corresponds to the elongation of the elastic element. This way, the torque control task is transformed to a position control task, which comes natural to traditional DC motors. In this paper, several existing control strategies are analyzed and compared with respect to passivity concerns. Cascaded control with a fast inner velocity loop results to be the best option. Based on the analysis, boundaries for the parameters are presented, such that the force controller may contain integral action without jeopardizing passivity.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2009

Reference Trajectory Generation for Rehabilitation Robots: Complementary Limb Motion Estimation

Heike Vallery; E.H.F. van Asseldonk; Martin Buss; H. van der Kooij

For gait rehabilitation robots, an important question is how to ensure stable gait, while avoiding any interaction forces between robot and human in case the patient walks correctly. To achieve this, the definition of ldquocorrectrdquo gait needs to adapted both to the individual patient and to the situation. Recently, we proposed a method for online trajectory generation that can be applied for hemiparetic subjects. Desired states for one (disabled) leg are generated online based on the movements of the other (sound) leg. An instantaneous mapping between legs is performed by exploiting physiological interjoint couplings. This way, the patient generates the reference motion for the affected leg autonomously. The approach, called Complementary Limb Motion Estimation (CLME), is implemented on the LOPES gait rehabilitation robot and evaluated with healthy subjects in two different experiments. In a previously described study, subjects walk only with one leg, while the robots other leg acts as a fake prosthesis, to simulate complete loss of function in one leg. This study showed that CLME ensures stable gait. In a second study, to be presented in this paper, healthy subjects walk with both their own legs to assess the interference with self-determined walking. Evaluation criteria are: Power delivered to the joints by the robot, electromyography (EMG) distortions, and kinematic distortions, all compared to zero torque control, which is the baseline of minimum achievable interference. Results indicate that interference of the robot is lower with CLME than with a fixed reference trajectory, mainly in terms of lowered exchanged power and less alteration of EMG. This implies that subjects can walk more naturally with CLME, and they are assisted less by the robot when it is not needed. Future studies with patients are yet to show whether these properties of CLME transfer to the clinical domain.


international conference on rehabilitation robotics | 2005

Design of a series elastic- and Bowden cable-based actuation system for use as torque-actuator in exoskeleton-type training

Jan F. Veneman; R. Ekkelenkamp; R. Kruidhof; F.C.T. van der Helm; H. van der Kooij

Common actuators have important drawbacks for use in an exoskeleton type of rehabilitation (training) robot. Either the actuators are heavy, complex or poor torque sources. A new actuation system is proposed and tested that combines a lightweight joint and a simple structure with adequate torque source quality. It consists of a servomotor, a flexible Bowden cable transmission, and a force feedback loop based on a series elastic element. Measurements show that performance is sufficient for use in a gait rehabilitation robot.


ieee international conference on rehabilitation robotics | 2007

Dampace: dynamic force-coordination trainer for the upper extremities

Arno H. A. Stienen; Edsko E.G. Hekman; F.C.T. van der Helm; Gerdienke B. Prange; M.J.A. Jannink; A.M.M. Aalsma; H. van der Kooij

According to reviews, training with upper-extremities rehabilitation robotics is at least as good as regular stroke rehabilitation, probably because the robotics increase the training intensity for the patients. As an alternative to the functional approach mimicking activities of daily living, targeted force-coordination training may also have its benefits. Our passive exoskeleton, the Dampace, has controlled braking on the three rotational axes of the shoulder and one of the elbow. It is designed to combine functional training of activities of daily living with force-coordination training. The Dampace exoskeleton can assist in identifying causes behind the movement disorders of stroke patients, tackle these causes with isolated force-coordination training, possibly simultaneously over multiple joints, and then integrate the isolated training back into a functional, task-specific training protocol. Not needing to align the Dampace axes to the human shoulder and elbow axes overcome some of the difficulties traditionally associated with exoskeletons. Although it adds more complexity, the reduction of setup times to a few minutes and the absence of static reaction forces in the human joints, are major advantages and have been well received by therapists and physicians. Controlled braking instead of actively assisting actuators, has the advantage of inherent safety and always actively participating patients, at the cost of not being able to assist movements or create all virtual environments.


IEEE Transactions on Biomedical Engineering | 2010

Design of a Rotational Hydroelastic Actuator for a Powered Exoskeleton for Upper Limb Rehabilitation

Arno H. A. Stienen; Edsko E.G. Hekman; H. ter Braak; A.M.M. Aalsma; F.C.T. van der Helm; H. van der Kooij

The goal of this study was to validate the suitability of a novel rotational hydroelastic actuator (rHEA) for use in our new rehabilitation exoskeleton for the upper limbs, the Limpact. The rHEA consists of a rotational hydraulic actuator and a custom-designed symmetric torsion spring in a series-elastic configuration. For rehabilitation therapy and impairment quantification, both compliant impedance control and stiff admittance control modes are possible. In the validation experiments, the torque bandwidth of the rHEA was limited to 18 Hz for a desired 20 N·m reference signal (multisine, constant spectrum) due the transport delays in the long flexible tubes between the valve and cylinder. These transport delays also required changes to existing theoretical models to better fit the models on the measured frequency response functions. The (theoretical) measurable torque resolution was better than 0.01 N ·m and the (validated) delivered torque resolution below 1 N· m. After the validation experiments, further iterative improvements resulted in a spring design capable of a maximum output torque of 50 N·m with an intrinsic stiffness of 150 N· m/rad and a slightly higher bandwidth. With the design locked, the maximum measurable isometric torque is 100 N ·m. In conclusion, the rHEA is suitable for upper limb rehabilitation therapy as it matches the desired performance.


Neurorehabilitation and Neural Repair | 2009

Influence of Gravity Compensation on Muscle Activation Patterns During Different Temporal Phases of Arm Movements of Stroke Patients

Gerdienke B. Prange; M.J.A. Jannink; Arno H. A. Stienen; H. van der Kooij; Maarten Joost IJzerman; Hermie J. Hermens

Background. Arm support to help compensate for the effects of gravity may improve functional use of the shoulder and elbow during therapy after stroke, but gravity compensation may alter motor control. Objective. To obtain quantitative information on how gravity compensation influences muscle activation patterns during functional, 3-dimensional reaching movements. Methods. Eight patients with mild hemiparesis performed 2 sets of repeated reach and retrieval movements, with and without unloading the arm, using a device that acted at the elbow and forearm to compensate for gravity. Electromyographic (EMG) patterns of 6 upper extremity muscles were compared during elbow and shoulder joint excursions with and without gravity compensation. Results. Movement performance was similar with and without gravity compensation. Smooth rectified EMG (SRE) values were decreased from 25% to 50% during movements with gravity compensation in 5 out of 6 muscles. The variation of SRE values across movement phases did not differ across conditions. Conclusions. Gravity compensation did not affect general patterns of muscle activation in this sample of stroke patients, probably since they had adequate function to complete the task without arm support. Gravity compensation did facilitate active arm movement excursions without impairing motor control. Gravity compensation may be a valuable modality in conventional or robot-aided therapy to increase the intensity of training for mildly impaired patients.


ieee international conference on rehabilitation robotics | 2007

Freebal: dedicated gravity compensation for the upper extremities

Arno H. A. Stienen; Edsko E.G. Hekman; F.C.T. van der Helm; Gerdienke B. Prange; M.J.A. Jannink; A.M.M. Aalsma; H. van der Kooij

In most upper-extremity rehabilitation robotics, several components affect the therapy outcome. A common component is gravity compensation which alleviates upper-extremity movements. Gravity compensation by itself could improve motor control further or faster, separate from other effects of robotic therapy. To investigate the rehabilitation value of gravity compensation separately, we created the dedicated gravity compensation system, Freebal. The sling systems with ideal spring mechanisms in the Freebal are well suited for providing compensation forces. The device has steplessly scalable forces, a large range of motion with constant compensation forces, independent control of the compensation of the lower and upper arm, and low movement impedance. It also does not need external power, force sensors or active controllers. Finally, the Freebal can be easily moved, serviced and used in arm rehabilitation with either sitting or standing subjects.


ieee international conference on rehabilitation robotics | 2007

Selective control of a subtask of walking in a robotic gait trainer(LOPES)

E.H.F. van Asseldonk; R. Ekkelenkamp; Jan F. Veneman; F.C.T. van der Helm; H. van der Kooij

Robotic gait trainers are used all over the world for the rehabilitation of stroke patients, despite relatively little is known about how the robots should be controlled to achieve the optimal improvement. Most devices control complete joint trajectories and assume symmetry between both legs by either a position or an impedance control. However we believe that the control should not be on a joint level but on a subtask level (i.e. foot clearance, balance control). To this end we have chosen for virtual model control(VMC) to define a set of controllers that can assist in each of these tasks. Thus enabling the exoskeleton to offer selective support and evaluation of each substask during rehabilitation training. The aim of this explorative pilot study was to assess the performance of a VMC of the step height and to assess if selective control of the step height left the remaining of the walking pattern unaffected. Four young healthy subjects walked on a treadmill with their legs and pelvis attached to the lopes exoskeleton in 3 different conditions: (1) providing minimal resistance, (2) control of the left step height with a low stiffness (3) control of the step height with a large stiffness. We have shown that it is possible to exert a vertical forces for the support of foot clearance during the swing phase. The higher stiffness of the VMC resulted in a greater change of the step height, which was achieved by a larger increase of the maximal hip and knee flexion compared to the low stiffness condition. The control of the step height resulted in minor changes in the cycle time and swing time. The joint angles also showed only minor changes. The preliminary results suggest that we were able to control a subtask of walking, while leaving the remaining walking trajectory largely unaffected. In the near future, control of other subtask will be implemented and evaluated in isolation and in conjunction with each other.

Collaboration


Dive into the H. van der Kooij's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.C.T. van der Helm

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alfred C. Schouten

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge