Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Van Oosterwyck is active.

Publication


Featured researches published by H. Van Oosterwyck.


Acta Biomaterialia | 2012

The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds

S. Van Bael; Yoke Chin Chai; Silvia Truscello; Maarten Moesen; Greet Kerckhofs; H. Van Oosterwyck; J-P Kruth; Jan Schrooten

The specific aim of this study was to gain insight into the influence of scaffold pore size, pore shape and permeability on the in vitro proliferation and differentiation of three-dimensional (3-D) human periosteum-derived cell (hPDC) cultures. Selective laser melting (SLM) was used to produce six distinct designed geometries of Ti6Al4V scaffolds in three different pore shapes (triangular, hexagonal and rectangular) and two different pore sizes (500 μm and 1000 μm). All scaffolds were characterized by means of two-dimensional optical microscopy, 3-D microfocus X-ray computed tomography (micro-CT) image analysis, mechanical compression testing and computational fluid dynamical analysis. The results showed that SLM was capable of producing Ti6Al4V scaffolds with a broad range of morphological and mechanical properties. The in vitro study showed that scaffolds with a lower permeability gave rise to a significantly higher number of cells attached to the scaffolds after seeding. Qualitative analysis by means of live/dead staining and scanning electron micrography showed a circular cell growth pattern which was independent of the pore size and shape. This resulted in pore occlusion which was found to be the highest on scaffolds with 500 μm hexagonal pores. Interestingly, pore size but not pore shape was found to significantly influence the growth of hPDC on the scaffolds, whereas the differentiation of hPDC was dependent on both pore shape and pore size. The results showed that, for SLM-produced Ti6Al4V scaffolds with specific morphological and mechanical properties, a functional graded scaffold will contribute to enhanced cell seeding and at the same time can maintain nutrient transport throughout the whole scaffold during in vitro culturing by avoiding pore occlusion.


Biomaterials | 2004

Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone

S.V.N. Jaecques; H. Van Oosterwyck; Luiza Muraru; T. Van Cleynenbreugel; E. De Smet; Martine Wevers; Ignace Naert; J. Vander Sloten

Load-bearing tissues, like bone, can be replaced by engineered tissues or tissue constructs. For the success of this treatment, a profound understanding is needed of the mechanical properties of both the native bone tissue and the construct. Also, the interaction between mechanical loading and bone regeneration and adaptation should be well understood. This paper demonstrates that microfocus computer tomography (microCT) based finite element modelling (FEM) can have an important contribution to the field of functional bone engineering as a biomechanical analysis tool to quantify the stress and strain state in native bone tissue and in tissue constructs. Its value is illustrated by two cases: (1) in vivo microCT-based FEM for the analysis of peri-implant bone adaptation and (2) design of biomechanically optimised bone scaffolds. The first case involves a combined animal experimental and numerical study, in which the peri-implant bone adaptive response is monitored by means of in vivo microCT scanning. In the second case microCT-based finite element models were created of native trabecular bone and bone scaffolds and a mechanical analysis of both structures was performed. Procedures to optimise the mechanical properties of bone scaffolds, in relation to those of native trabecular bone are discussed.


Acta Biomaterialia | 2012

Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies

Yoke Chin Chai; Aurélie Carlier; Johanna Bolander; Scott J. Roberts; Liesbet Geris; Jan Schrooten; H. Van Oosterwyck; F.P. Luyten

Calcium phosphate (CaP) has traditionally been used for the repair of bone defects because of its strong resemblance to the inorganic phase of bone matrix. Nowadays, a variety of natural or synthetic CaP-based biomaterials are produced and have been extensively used for dental and orthopaedic applications. This is justified by their biocompatibility, osteoconductivity and osteoinductivity (i.e. the intrinsic material property that initiates de novo bone formation), which are attributed to the chemical composition, surface topography, macro/microporosity and the dissolution kinetics. However, the exact molecular mechanism of action is unknown. This review paper first summarizes the most important aspects of bone biology in relation to CaP and the mechanisms of bone matrix mineralization. This is followed by the research findings on the effects of calcium (Ca²⁺) and phosphate (PO₄³⁻) ions on the migration, proliferation and differentiation of osteoblasts during in vivo bone formation and in vitro culture conditions. Further, the rationale of using CaP for bone regeneration is explained, focusing thereby specifically on the materials osteoinductive properties. Examples of different material forms and production techniques are given, with the emphasis on the state-of-the art in fine-tuning the physicochemical properties of CaP-based biomaterials for improved bone induction and the use of CaP as a delivery system for bone morphogenetic proteins. The use of computational models to simulate the CaP-driven osteogenesis is introduced as part of a bone tissue engineering strategy in order to facilitate the understanding of cell-material interactions and to gain further insight into the design and optimization of CaP-based bone reparative units. Finally, limitations and possible solutions related to current experimental and computational techniques are discussed.


Acta Biomaterialia | 2012

Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study

Silvia Truscello; Greet Kerckhofs; S. Van Bael; Grzegorz Pyka; Jan Schrooten; H. Van Oosterwyck

Scaffold permeability is a key parameter combining geometrical features such as pore shape, size and interconnectivity, porosity and specific surface area. It can influence the success of bone tissue engineering scaffolds, by affecting oxygen and nutrient transport, cell seeding efficiency, in vitro three-dimensional (3D) cell culture and, ultimately, the amount of bone formation. An accurate and efficient prediction of scaffold permeability would be highly useful as part of a scaffold design process. The aim of this study was (i) to determine the accuracy of computational fluid dynamics (CFD) models for prediction of the permeability coefficient of three different regular Ti6Al4V scaffolds (each having a different porosity) by comparison with experimentally measured values and (ii) to verify the validity of the semi-empirical Kozeny equation to calculate the permeability analytically. To do so, five CFD geometrical models per scaffold porosity were built, based on different geometrical inputs: either based on the scaffolds computer-aided design (CAD) or derived from 3D microfocus X-ray computed tomography (micro-CT) data of the additive manufactured (AM) scaffolds. For the latter the influence of the spatial image resolution and the image analysis algorithm used to determine the scaffolds architectural features on the predicted permeability was analysed. CFD models based on high-resolution micro-CT images could predict the permeability coefficients of the studied scaffolds: depending on scaffold porosity and image analysis algorithm, relative differences between measured and predicted permeability values were between 2% and 27%. Finally, the analytical Kozeny equation was found to be valid. A linear correlation between the ratio Φ(3)/S(s)(2) and the permeability coefficient k was found for the predicted (by means of CFD) as well as measured values (relative difference of 16.4% between respective Kozeny coefficients), thus resulting in accurate and efficient calculation of the permeability of regular AM scaffolds.


Biomechanics and Modeling in Mechanobiology | 2010

Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions

Liesbet Geris; J. Vander Sloten; H. Van Oosterwyck

Both mechanical and biological factors play an important role in normal as well as impaired fracture healing. This study aims to provide a mathematical framework in which both regulatory mechanisms are included. Mechanics and biology are coupled by making certain parameters of a previously established bioregulatory model dependent on local mechanical stimuli. To illustrate the potential added value of such a framework, this coupled model was applied to investigate whether local mechanical stimuli influencing only the angiogenic process can explain normal healing as well as overload-induced nonunion development. Simulation results showed that mechanics acting directly on angiogenesis alone was not able to predict the formation of overload-induced nonunions. However, the direct action of mechanics on both angiogenesis and osteogenesis was able to predict overload-induced nonunion formation, confirming the hypotheses of several experimental studies investigating the interconnection between angiogenesis and osteogenesis. This study shows that mathematical models can assist in testing hypothesis on the nature of the interaction between biology and mechanics.


Medical Engineering & Physics | 2003

Finite element study of trochanteric gamma nail for trochanteric fracture

K Sitthiseripratip; H. Van Oosterwyck; J. Vander Sloten; Banchong Mahaisavariya; Erik L. J. Bohez; J Suwanprateeb; R. Van Audekercke; P Oris

A three-dimensional finite element study of trochanteric fracture fixation by a trochanteric gamma nail (TGN) was investigated in this study. The analyses were performed under one-legged stance load boundary conditions to study the stress distribution and displacements. The influence of material properties (E-modulus) of the implant, the bone and contact condition in the fracture zone was determined. The results show that the stresses in the implant were lower in case of titanium alloy implant material but at the same time higher displacements occurred. The results also indicate that the stresses in the TGN gradually reduced throughout the healing process of the bone in the fracture zone.


Philosophical Transactions of the Royal Society A | 2009

In silico biology of bone modelling and remodelling: regeneration

Liesbet Geris; J. Vander Sloten; H. Van Oosterwyck

Bone regeneration is the process whereby bone is able to (scarlessly) repair itself from trauma, such as fractures or implant placement. Despite extensive experimental research, many of the mechanisms involved still remain to be elucidated. Over the last decade, many mathematical models have been established to investigate the regeneration process in silico. The first models considered only the influence of the mechanical environment as a regulator of the healing process. These models were followed by the development of bioregulatory models where mechanics was neglected and regeneration was regulated only by biological stimuli such as growth factors. The most recent mathematical models couple the influences of both biological and mechanical stimuli. Examples are given to illustrate the added value of mathematical regeneration research, specifically in the in silico design of treatment strategies for non-unions. Drawbacks of the current continuum-type models, together with possible solutions in extending the models towards other time and length scales are discussed. Finally, the demands for dedicated and more quantitative experimental research are presented.


Journal of Biomedical Materials Research | 1999

Adhesion of new bioactive glass coating.

Jan Schrooten; H. Van Oosterwyck; J. Vander Sloten; Jozef Helsen

A valuable alternative to the existing biomedical implant coatings is a bioactive glass (BAG) coating that is produced by reactive plasma spraying. A mechanical performance requirement that is of the utmost importance is the adhesion strength of the coating. Considering the application as dental implant, a new adhesion test (shear test), which was close to the service conditions, was designed. A Ti6Al4V rod (3 mm) with a sprayed BAG coating of 50 microm was glued with an epoxy glue to a hollow cylindrical counterpart and was used as such in the tensile machine. This test was evaluated by finite element analysis (FEA). Preliminary experiments showed that a conversion from shear to tensile adhesion strength is possible by using the Von Mises criterion (sigma = 3(1/2)tau), indicating that thin coatings of brittle materials can behave as a ductile material. The new coating technique was proved to produce a high quality coating with an adhesion strength of 40.1 +/- 4.8 MPa in shear and 69.4 +/- 8.4 MPa in tension. The FEA revealed that no one homogeneously distributed shear stress is present but several nonhomogeneously distributed stress components (shear and tensile) are present in the coating. This analysis indicated that real service conditions are much more complicated than standard adhesion tests.


Computer Methods in Biomechanics and Biomedical Engineering | 2003

Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants.

Liesbet Geris; H. Van Oosterwyck; J. Vander Sloten; Joke Duyck; Ignace Naert

Nowadays, there is a growing consensus on the impact of mechanical loading on bone biology. A bone chamber provides a mechanically isolated in vivo environment in which the influence of different parameters on the tissue response around loaded implants can be investigated. This also provides data to assess the feasibility of different mechanobiological models that mathematically describe the mechanoregulation of tissue differentiation. Before comparing numerical results to animal experimental results, it is necessary to investigate the influence of the different model parameters on the outcome of the simulations. A 2D finite element model of the tissue inside the bone chamber was created. The differentiation models developed by Prendergast, et al. [“Biophysical stimuli on cells during tissue differentiation at implant interfaces”, Journal of Biomechanics, 30(6), (1997), 539–548], Huiskes et al. [“A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation”, Journal of Material Science: Materials in Medicine, 8 (1997) 785–788] and by Claes and Heigele [“Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing”, Journal of Biomechanics, 32(3), (1999) 255–266] were implemented and integrated in the finite element code. The fluid component in the first model has an important effect on the predicted differentiation patterns. It has a direct effect on the predicted degree of maturation of bone and a substantial indirect effect on the simulated deformations and hence the predicted phenotypes of the tissue in the chamber. Finally, the presence of fluid also causes time-dependent behavior. Both models lead to qualitative and quantitative differences in predicted differentiation patterns. Because of the different nature of the tissue phenotypes used to describe the differentiation processes, it is however hard to compare both models in terms of their validity.


Journal of Materials Science: Materials in Medicine | 2002

Trabecular bone scaffolding using a biomimetic approach

T. Van Cleynenbreugel; H. Van Oosterwyck; J. Vander Sloten; Jan Schrooten

The current treatment of large bone defects has several disadvantages. An alternative for using grafts or bone cement for the filling of bone cavities is the use of a bone scaffold that provides a temporary load-bearing function. This paper describes a biomechanical design procedure for a personalized implant with a geometry that has a good fit inside the defect and an internal architecture that provides a scaffold with optimized mechanical properties. These properties are optimized for a load-bearing application, for avoiding stress shielding in the bone surrounding the implant and for activation of osteoblasts seeded inside the scaffold. The design is based on medical images both of the defect and of healthy bone tissue that is representative for the tissue being replaced by the scaffold. Evaluation of the scaffolds mechanical properties is done with high-resolution finite element analyzes of the scaffold and healthy bone. This allows matching of the scaffold and bone mechanical properties, thus giving the scaffold its biomimetic properties.

Collaboration


Dive into the H. Van Oosterwyck's collaboration.

Top Co-Authors

Avatar

J. Vander Sloten

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ignace Naert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joke Duyck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

M. De Cooman

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan Schrooten

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Robert Puers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

B. Puers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

T. Van Cleynenbreugel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

E. De Smet

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge