H. Y. Ng
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Y. Ng.
Water Science and Technology | 2008
Olivier Lefebvre; A. Al-Mamun; H. Y. Ng
Microbial fuel cells (MFCs) are a promising anaerobic technology but they are limited by the high cost of the catalyst used at the cathode (typically platinum). In this study, we designed a novel type of two-chambered MFC wherein an autoheterotrophic denitrifying biofilm replaced the costly catalyst on the cathode surface. Micro-organisms performed denitrification by using electrons supplied by bacteria oxidizing domestic wastewater and acetate as substrates in the anode chamber. This two-chambered MFC equipped with a biocathode generated during more than 1.5 month up to 9.4 mW m(-2) of anode surface or 0.19 W m(-3) of anode chamber volume, while removing over 65% of COD, 84% of total nitrogen and nearly 30% of suspended solids with domestic wastewater as a substrate, and nearly 95% of acetate in the subsequent experiments.
Water Science and Technology | 2008
Zhi Huang; S.L. Ong; H. Y. Ng
Two 6-L submerged anaerobic membrane bioreactors (SAMBR) with SRT of 30 and 60 d (denoted as R30 and R60, respectively) were set up and operated for five months, with a mixture of glucose as substrate. Feasibility of SAMBR was studied for treatment of low-strength wastewater. First two months were identified as acclimation stage. A COD removal efficiency was achieved stably at around 99% and biogas productions were maintained at 0.023 and 0.028 L CH4/gMLVSSd for R30 and R60, respectively. Even though R60 contained higher MLVSS concentration, no significant difference of treatment performances between both reactors was found due to the low organic loading rate and high purification function of membrane. In the investigation of membrane fouling, less irreversible fouling was observed for R30 compared to R60. High non-flocculent concentration of R60 would be responsible for membrane internal pore blocking and deteriorated effluent quality.
Water Science and Technology | 2008
Olivier Lefebvre; A. Al-Mamun; W. K. Ooi; Zhe Tang; Daniel H. C. Chua; H. Y. Ng
Microbial fuel cell (MFC) is an emerging and promising technology, particularly in the field of wastewater treatment. The MFC capability of achieving organic removal and generating in situ electricity could make it an attractive alternative wastewater treatment technology over conventional treatment technologies. However, MFC is still far from being economically viable, especially because of the cost of the platinum (Pt) catalyst that makes possible the reaction at the cathode. In this study, we tested alternative cathode catalysts, namely sputter-deposited Cobalt (Co) and denitrifying bacteria (biocathode). The performance of these innovative cathodes was compared with that of classic Pt-cathodes. Co competed well with Pt, but further research is still required for biocathodes. However, biocathodes MFC have showed promise.
Water Science and Technology | 2008
H. Y. Ng; L.Y. Lee; S.L. Ong; Guihe Tao; B. Viawanath; Kiran A. Kekre; W. Lay; Harry Seah
Treatment and disposal of RO brine is an important part in sustaining the water reclamation practice. RO brine generated from water reclamation contains high concentration of organic and inorganic compounds. Cost-effective technologies for treatment of RO brine are still relatively unexplored. Thus, this study aim to determine a feasible treatment process for removal of both organic and inorganic compounds in RO brine generated from NEWater production. The proposed treatment consists of biological activated carbon (BAC) column followed by capacitive deionization (CDI) process for organic and inorganic removals, respectively. Preliminary bench-scale study demonstrated about 20% TOC removal efficiency was achieved using BAC at 40 mins empty bed contact time (EBCT) while the CDI process was able to remove more than 90% conductivity reducing it from 2.19 mS/cm to only about 164 microS/cm. More than 90% cations and anions in the BAC effluent were removed using CDI process. In addition, TOC and TN removals of 78% and 91%, respectively were also attained through this process. About 90% water recovery was achieved. This process shows the potential of increased water recovery in the reclamation process while volume for disposal can be further minimized. Further studies on the sustainable operation and process optimization are ongoing.
Water Science and Technology | 2012
N. Thepsuparungsikul; N. Phonthamachai; H. Y. Ng
The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer-Emmerr-Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth.
Water Science and Technology | 2014
N. Thepsuparungsikul; T. C. Ng; Olivier Lefebvre; H. Y. Ng
The microbial fuel cell (MFC) is an innovative technology for producing electricity directly from biodegradable organic matter using bacteria. Among all the influenceable factors, anode materials play a crucial role in electricity generation. Recently, carbon nanotubes (CNTs) have exhibited promising properties as electrode material due to their unique structural, and physical and chemical properties. In this study, the impacts of CNT types in CNT-based anodes were investigated to determine their effect on both efficiency of wastewater treatment and power generation. The CNTs, namely single-walled CNT with carboxyl group (SWCNT), multi-walled CNT with carboxyl group (MWCNT-COOH) and multi-walled CNT with hydroxyl group (MWCNT-OH) were used to fabricate CNT-based anodes by a filtration method. Overall, MWCNTs provided better results than SWCNTs, especially in the presence of the -OH groups. The highest power and treatment efficiencies in MFC were achieved with an anode made of MWCNT-OH filtered on Poreflon membrane; the open circuit voltage attained was 0.75 V and the maximum power density averaged 167 mW/m(2), which was 130% higher than that obtained with plain carbon cloth. In addition, MWCNT-OH is more cost-effective, further suggesting its potential to replace plain carbon cloth generally used for the MFC anode.
Water Science and Technology | 2014
Olivier Lefebvre; Xueqing Shi; Chung-Hsin Wu; H. Y. Ng
Pharmaceutical wastewater generated by an antibiotics (penicillin) company was treated by aerobic membrane bioreactors (MBRs) and sequencing batch reactors (SBRs). At a low organic loading rate of 0.22 kg-COD m(-3)d(-1), both types of reactors were capable of treating the wastewater such that the treated effluent met the discharge regulation except for the total dissolved solids. However, when the loading rate was increased to 2.92 kg-COD m(-3)d(-1), foaming issues resulted in unstable performance. Overall, the MBRs achieved better solid removal but the SBRs performed better in regards to the degradation of aromatic compounds, as determined by UV absorbance (UVA). Finally, ozonation was applied on two different streams and showed promise on the strong stream - that corresponds to the formulation effluent and contains most of the biorefractory compounds. Ozonation successfully reduced the UVA, lowered the pH and increased the biochemical oxygen demand : chemical oxygen demand (BOD5 : COD) ratio of the strong stream. However, it was less efficient on the effluent having undergone pre-treatment by a biofilter due to a lack of selectivity towards refractory compounds.
Water Science and Technology | 2010
H. Mo; H. Y. Ng
This study was to experimentally investigate the performance and organic fouling behaviour in a 1-m long RO membrane channel with or without spacer for desalting. It was found that local permeate flux distributed heterogeneously along the long membrane channel without a spacer inserted due to exponential growth of concentration polarization, which also resulted in decreasing salt rejection and increasing organic fouling along the membrane channel in the downstream direction. This heterogeneity could be lessened by inserting a spacer into the channel, which mitigated concentration polarization due to the enhanced turbulence caused by a spacer, especially at the downstream portion of the channel. However, in the upstream of the channel, inserting a spacer exerted an additional vertical resistance which might counteract the effect of concentration polarization mitigation by a spacer and caused a lower permeate flux. This suggests that it is necessary to consider the integral effect of spacer for designing an RO membrane module and an overall RO system in order to prevent extra resistance, reduce concentration polarization and membrane fouling.
Water Science and Technology | 2008
T. C. A. Ng; H. Y. Ng
Fouling is still one of the main issues in the operation of membrane bioreactors (MBRs). While most attention has been paid to extracellular polymeric substances (EPS) and soluble microbial products (SMP) in the bulk solution, changes in membrane filterability may be more adequately described by the structural characteristic of the fouling layer or biofilm. This study shows that membrane filterability and the rise in TMP is associated to the changes in the biofiom structure, and polysaccharides may be the most significant fraction that affects fouling.
Water Science and Technology | 2011
Olivier Lefebvre; Arnaud Uzabiaga; Yujia Shen; Zi Tan; Y. P. Cheng; Wen Tso Liu; H. Y. Ng
A membrane electrode assembly (MEA) for microbial fuel cells (MEA-MFC) was developed for continuous electricity production while treating domestic wastewater concurrently. It was optimized via three upgraded versions (noted α, β and γ) in terms of design (current collectors, hydrophilic separator nature) and operating conditions (hydraulic retention time, external resistance, aeration rate, recirculation). An overall rise of power by over 100% from version α to γ shows the importance of factors such as the choice of proper construction materials and prevention of short-circuits. A power of 2.5 mW was generated with a hydraulic retention time of 2.3 h when a Selemion proton exchange membrane was used as a hydrophilic separator in the MEA and 2.8 mW were attained with a reverse osmosis membrane. The MFC also showed a competitive value of internal resistance (≈40-50 Ω) as compared to the literature, especially considering its large volume (3 L). However, the operation of our system in a complete loop where the anolyte was allowed to trickle over the cathode (version γ) resulted in system failure.