Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Habib Ali is active.

Publication


Featured researches published by Habib Ali.


Acta Tropica | 2018

Genetic interaction and diversity of the families Libellulidae and Gomphidae through COI gene from China and Pakistan

Saif Ul Islam; Muhammad Qasim; Wenzhong Lin; Waqar Islam; Muhammad Arif; Habib Ali; Zhenguo Du; Zujian Wu

A total of 300 dragonflies (Odonata) were collected from six different localities of China and Pakistan. Sixty seven representative samples were selected to sequence their mitochondrial cytochrome oxidase subunit I (COI). An examination of the resultant sequences identified 21 different dragonfly species, belonging to 15 distinct genera, two families, Libellulidae and Gomphidae. Sequence alignment was executed using Clustal-W in BioEdit v6. The phylogenetic tree was constructed through Neighbor-joining method by using Jukes-Cantor model, and genetic divergence was calculated via Kimura 2-parameter using MEGA7, while Genetic diversity was calculated by DnaSP v5. The maximum genetic divergence was observed for Crocothemis servilia, at 20.49%, followed by Libellulidae sp. with 22.30% while minimum divergence (0.82%) was observed for Melligomphus ardens. Likewise, a significant genetic diversity was observed for all species. However, Crocothemis servilia species presented maximum value (176 mutations) followed by Libellulidae spp. (150 mutations), whereas minimum value (3 mutations) was observed by Orthetrum testaceum. Interestingly, the diversity of C. servilia, all of which are collected from a single location of China, is much higher than those from Pakistan, which were collected from 5 different places with a spatial distance exceeding 500 Kms. Our results are useful in gaining a full appreciation of the global diversity of dragonflies and the development of conservation measures of this insect.


Acta Tropica | 2018

A nation-wide genetic survey revealed a complex population structure of Bemisia tabaci in Pakistan

Waqar Islam; Wenzhong Lin; Muhammad Qasim; Saif Ul Islam; Habib Ali; Muhammad Adnan; Muhammad Arif; Zhenguo Du; Zujian Wu

The whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex distributed worldwide. In Pakistan, B. tabaci poses a serious threat to agriculture production. To understand its diversity in Pakistan, a large-scale sampling was conducted from various locations of all four provinces of the country and Mitochondrial cytochrome oxidase I (mtCOI) gene sequencing was used to determine the whiteflies genetically. The study revealed the presence of five different cryptic species in Pakistan namely Asia II-1, Asia II-5, Asia II-7, Asia II-8 and MEAM-1, respectively. Among them, Asia II-1, which was previously reported from a few areas in the country, had been found now to be prevalent all over the country covering 88.7% of all the sequenced samples. Based on the mtCOI sequences and genetic distance analyses, the diversity of Asia II-1 was much greater than all other cryptic species, which exist only in small patches.


Microbial Pathogenesis | 2018

A novel bacterial symbiont association in the hispid beetle, Octodonta nipae (Coleoptera: Chrysomelidae), their dynamics and phylogeny

Habib Ali; Abrar Muhammad; Saif Ul Islam; Waqar Islam; Youming Hou

The hispid leaf beetle, Octodonta nipae (Maulik), (Coleoptera: Chrysomelidae), is a devastating pest of palm cultivation worldwide. Endosymbiotic bacteria in the genus Wolbachia are arguably one of the most abundant bacterial group associated with arthropods. Owing to its critical effects on host reproduction, Wolbachia has garnered much attention as a prospective future tool for insect pest management. However, their association, infection dynamics, and functionality remain unknown in this insect pest. Here, we diagnosis for the first time, the infection prevalence, and occurrence of Wolbachia in O. nipae. Experimental evidence by the exploration of wsp gene vindicate that O. nipae is naturally infected with bacterial symbiont of genus Wolbachia, showing a complete maternal inheritance with shared a common Wolbachia strain (wNip). Moreover, MLST (gatB, fbpA, coxA, ftsZ, and hcpA) analysis enabled the detections of new sequence type (ST-484), suggesting a particular genotypic association of O. nipae and Wolbachia. Subsequently, quantitative real-time PCR (qPCR) assay demonstrated variable infection density across different life stages (eggs, larvae, pupae and adult male and female), body parts (head, thorax, abdomen), and tissues (ovaries, testes, and guts). Infection density was higher in egg and female adult stage, as well as abdomen and reproductive tissues as compared to other samples. Interestingly, Wolbachia harbored dominantly in a female than the male adult, while, no significant differences were observed between male and female body parts and tissues. Phylogeny of Wolbachia infection associated with O. nipae rectified from all tested life stages were unique and fall within the same monophyletic supergroup-A of Wolbachia clades. The infection density of symbiont is among the valuable tool to understand their biological influence on hosts, and this latest discovery would facilitate the future investigations to understand the host-symbiont complications and its prospective role as a microbiological agent to reduce pest populations.


Journal of Microbiology and Biotechnology | 2018

Infection Density Dynamics and Phylogeny of Wolbachia Associated with Coconut Hispine Beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), by Multilocus Sequence Type (MLST) Genotyping

Habib Ali; Abrar Muhammad; Youming Hou

The intracellular bacterium Wolbachia pipientis is widespread in arthropods. Recently, possibilities of novel Wolbachia-mediated hosts, their distribution, and natural rate have been anticipated, and the coconut leaf beetle Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), which has garnered attention as a serious pest of palms, was subjected to this interrogation. By adopting Wolbachia surface protein (wsp) and multilocus sequence type (MLST) genotypic systems, we determined the Wolbachia infection density within host developmental stages, body parts, and tissues, and the results revealed that all the tested samples of B. longissima were infected with the same Wolbachia strain (wLog), suggesting complete vertical transmission. The MLST profile elucidated two new alleles (ftsZ-234 and coxA-266) that define a new sequence type (ST-483), which indicates the particular genotypic association of B. longissima and Wolbachia. The quantitative real-time PCR analysis revealed a higher infection density in the eggs and adult stage, followed by the abdomen and reproductive tissues, respectively. However, no significant differences were observed in the infection density between sexes. Moreover, the wsp and concatenated MLST alignment analysis of this study with other known Wolbachia-mediated arthropods revealed similar clustering with distinct monophyletic supergroup B. This is the first comprehensive report on the prevalence, infection dynamics, and phylogeny of the Wolbachia endosymbiont in B. longissima, which demonstrated that Wolbachia is ubiquitous across all developmental stages and distributed in the entire body of B. longissima. Understanding the Wolbachia infection dynamics would provide useful insight to build a framework for future investigations, understand its impacts on host physiology, and exploit it as a potential biocontrol agent.


Acta Tropica | 2018

Genetic diversity of the families Aeshnidae, Gomphidae and Libellulidae through COI gene from South China

Saif Ul Islam; Muhammad Qasim; Habib Ali; Waqar Islam; Muhammad Arif; Chandra Kanta Dash; Wenzhong Lin; Zhenguo Du; Zujian Wu

Adult dragonflies (Anisoptera) were collected from different localities of South China covering eight provinces. Representative sequences were sixty-one, including 16 species, 11 genera and three families (Aeshnidae, Gomphidae and Libellulidae), under cytochrome oxidase subunit I (COI) gene. After alignment of sequences by BioEdit v6, genetic interaction and divergence were computed by MEGA 7 whereas all the indices of genetic diversity were calculated by DnaSP v5 software. Phylogenetic trees were constructed through Neighbor-Joining method under Jukes-Cantor model, and all species of respective families were assembled with each other into individual groups. Maximum divergence was observed by Trithemis genus (18.69%), followed by Orthetrum genus (18.16%), whereas a minimum value of divergence was noted for Pantala genus (0.31%). On the other hand, maximum genetic diversity was recorded for Orthetrum genus up to 142 mutations, followed by Trithemis genus (126 mutations), while the minimum value (two mutations) was observed for Pantala genus. Genetic diversity for overall and Libellulidae family sequences was much higher, up to 404 mutations and 344 mutations, respectively. Current results suggest a high diversity of odonates in the South China region and results are valuable in gaining a total obligation of the diversity of Asian odonates and conservation measures of this insect group.


Saudi Journal of Biological Sciences | 2018

Insect pollinators diversity and abundance in Eruca sativa Mill. (Arugula) and Brassica rapa L. (Field mustard) crops

Muhammad Shakeel; Hussain Ali; Sajjad Ahmad; Fazal Said; Khalid Ali Khan; Muhammad Amjad Bashir; Syed Ishtiaq Anjum; Waqar Islam; Hamed A. Ghramh; Mohammad Javed Ansari; Habib Ali

Studies on the insect pollinators diversity and their relative abundance in Eruca sativa Mill. (Arugula) and Brassica rapa L. (field mustard) was carried out during spring season from February to April consecutively during all the three years of 2016–18. Insect pollinators observed belonged to four orders i.e. Hymenoptera, Diptera, Lepidoptera, and Coleoptera. A total of 20 major species of insect pollinators were recorded. The highest abundance of pollinator species belonged to Hymenoptera. The most prominent insect pollinator species were Apis mellifera followed by other three honey bee species of A. cerana, A. florea, and A. dorsata respectively. Some species of solitary bees were also recorded. From Diptera, four species of syrphid fly and one species from Muscidae family were also recorded. Insect pollinators recorded from order Lepidoptera were Pieris brassicae, Vanessa cardui, and Papilio demoleus. Lady bird beetle Coccinella septempunctata was recorded from Coleoptera order as occasional visitor. It was noticed that E. sativa attracted more insect pollinators than B. rapa which may be attributed to different amount and chemical properties of nectar, with number of pollen grains, and flower canopy of both crops. Further studies are needed to confirm the reasons for higher pollinator visitation to E. sativa than B. rapa through chemical analysis of nectar, amount of pollens, flower physiology and phenology of both crops.


Molecular Phylogenetics and Evolution | 2018

Genomic evaluations of Wolbachia and mt DNA in the population of coconut hispine beetle, Brontispa longissima (Coleoptera: Chrysomelidae)

Habib Ali; Abrar Muhammad; Nafiu Sanda Bala; Guihua Wang; Zhiming Chen; Zhengqiang Peng; Youming Hou

Wolbachia pipientis is a diverse, ubiquitous and most prevalent intracellular bacterial group of alpha-Proteobacteria that is concerned with many biological processes in arthropods. The coconut hispine beetle (CHB), Brontispa longissima (Gestro) is an economically important pest of palm cultivation worldwide. In the present study, we comprehensively surveyed the Wolbachia-infection prevalence and mitochondrial DNA (mtDNA) polymorphism in CHB from five different geographical locations, including Chinas Mainland and Taiwan, Vietnam, Thailand, Malaysia and Indonesia. A total of 540 sequences were screened in this study through three different genes, i.e., cytochrome oxidase subunit I (COI), Wolbachia outer surface protein (wsp) and multilocus sequencing type (MLST) genes. The COI genetic divergence ranges from 0.08% to 0.67%, and likewise, a significant genetic diversity (π = 0.00082; P = 0.049) was noted within and between all analyzed samples. In the meantime, ten different haplotypes (H) were characterized (haplotype diversity = 0.4379) from 21 different locations, and among them, H6 (46 individuals) have shown a maximum number of population clusters than others. Subsequently, Wolbachia-prevalence results indicated that all tested specimens of CHB were found positive (100%), which suggested that CHB was naturally infected with Wolbachia. Wolbachia sequence results (wsp gene) revealed a high level of nucleotide diversity (π = 0.00047) under Tajimas D test (P = 0.049). Meanwhile, the same trend of nucleotide diversity (π = 0.00041) was observed in Wolbachia concatenated MLST locus. Furthermore, phylogenetic analysis (wsp and concatenated MLST genes) revealed that all collected samples of CHB attributed to same Wolbachia B-supergroup. Our results strongly suggest that Wolbachia bacteria and mtDNA were highly concordant with each other and Wolbachia can affect the genetic structure and diversity within the CHB populations.


Microbial Pathogenesis | 2018

Entomopathogenic nematode Steinernema carpocapsae surpasses the cellular immune responses of the hispid beetle, Octodonta nipae (Coleoptera: Chrysomelidae)

Nafiu Bala Sanda; Abrar Muhammad; Habib Ali; Youming Hou

The Nipa palm hispid, Octodonta nipae (Maulik) is an important invasive pest of palm trees particularly in Southern China. How this beetle interacts with invading pathogens via its immune system remains to be dissected. Steinernema carpocapsae is a pathogenic nematode that attacks a number of insects of economic importance. The present study systematically investigates the cellular immune responses of O. nipae against S. carpocapsae infection using combined immunological, biochemical and transcriptomics approaches. Our data reveal that S. carpocapsae efficiently resists being encapsulated and melanized within the hosts hemolymph and most of the nematodes were observed moving freely in the hemolymph even at 24 h post incubation. Consistently, isolated cuticles from the parasite also withstand encapsulation by the O. nipae hemocytes at all-time points. However, significant encapsulation and melanization of the isolated cuticles were recorded following heat treatment of the cuticles. The hosts phenoloxidase activity was found to be slightly suppressed due to S. carpocapsae infection. Furthermore, the expression levels of some antimicrobial peptide (AMP) genes were significantly up-regulated in the S. carpocapsae-challenged O. nipae. Taken together, our data suggest that S. carpocapsae modulates and surpasses the O. nipae immune responses and hence can serve as an excellent biological control agent of the pest.


Journal of Economic Entomology | 2018

The Endosymbiotic Wolbachia and Host COI Gene Enables to Distinguish Between Two Invasive Palm Pests; Coconut Leaf Beetle, Brontispa longissima and Hispid Leaf Beetle, Octodonta nipae

Habib Ali; Abrar Muhammad; Nafiu Sanda Bala; Youming Hou

Abstract To elucidate taxonomic eminence of identical pest species is essential for many ecological and conservation studies. Without proficient skills, accurate molecular identification and characterization are laborious and time-consuming. The coconut leaf beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), is biologically and morphologically identical to hispid leaf beetle, Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae), and is known as the most harming nuisances of palm cultivation worldwide. The present examination was to establish Wolbachia genotyping analysis along with host cytochrome oxidase subunit I (COI) gene for accurate identification between these individuals of the same family (Chrysomelidae). Here, we have cloned and sequenced a gene coding Wolbachia surface protein (wsp) and COI gene regions amplified from both species by polymerase chain reaction. The nucleotide sequences were directly determined (≈600 bp for wsp and ≈804 bp for COI) and aligned using the multiple alignment algorithms in the ESPript3 package and the MEGA5 program. Comparative sequence analysis indicated that the representative of wsp and COI sequences from these two beetles were highly variable. To ensure this bacterial variation, multilocus sequence typing (MLST) of bacterial genes was conducted, and the results vindicated the same trend of variations. Furthermore, the phylogenetic analysis also indicates that B. longissima and O. nipae being the two different species harbors two distinct Wolbachia Hertig and Burt (Rickettsiales: Anaplamataceae) supergroups B and A, respectively. The present outcomes quickly discriminate between these two species. Considering its simplicity and cost-effectiveness, it can be used as a diagnostic tool for discriminating such invasive species particularly B. longissima and O. nipae which has overlapping morphologic characters.


Microbial Pathogenesis | 2018

Temperature-dependent development of Asian citrus psyllid on various hosts, and mortality by two strains of Isaria

Muhammad Qasim; Yongwen Lin; Chandra Kanta Dash; Bamisope Steve Bamisile; Keppanan Ravindran; Saif Ul Islam; Habib Ali; Fangfei Wang; Liande Wang

Collaboration


Dive into the Habib Ali's collaboration.

Top Co-Authors

Avatar

Saif Ul Islam

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Waqar Islam

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Abrar Muhammad

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Youming Hou

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Muhammad Qasim

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Zujian Wu

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Wenzhong Lin

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Zhenguo Du

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Chandra Kanta Dash

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Liande Wang

Fujian Agriculture and Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge