Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hackwon Do is active.

Publication


Featured researches published by Hackwon Do.


Journal of Biological Chemistry | 2012

Structural Basis for Antifreeze Activity of Ice-binding Protein from Arctic Yeast

Jun Hyuck Lee; Ae Kyung Park; Hackwon Do; Kyoung Sun Park; Sang Hyun Moh; Young Min Chi; Hak Jun Kim

Background: Ice-binding proteins improve the cold tolerance of cells by inhibiting ice growth and recrystallization. Results: Crystal structure and mutagenesis data of LeIBP suggests the B face as an ice-binding site. Conclusion: LeIBP structure adopts a β-helical fold and the aligned Thr/Ser/Ala residues are critical for ice binding. Significance: LeIBP structure can serve as a structural model for a large number of IBPs. Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ∼25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-Å resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed β-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96–115 form a long α-helix that packs along one face of the β-helix), and a C-terminal hydrophobic loop region (243PFVPAPEVV251). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn185 provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common β-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins.


Cryobiology | 2012

Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30☆

Kyoung Sun Park; Hackwon Do; Jun Hyuck Lee; Seung Il Park; Eun jung Kim; Soon-Jong Kim; Sung-Ho Kang; Hak Jun Kim

Previously, we reported the ice-binding protein (LeIBP) from the Arctic yeast Leucosporidium sp. AY30. In this study we provide physicochemical characterization of this IBP, which belongs to a class of IBPs that exhibited no significant similarity in primary structure to other known antifreeze proteins (AFPs). We compared native, glycosylated and non-glycosylated recombinant LeIBPs. Interestingly, size-exclusion chromatography and analytical ultracentrifugation revealed that LeIBP self-associates with a reversible dimer with K(d) values in the range 3.45-7.24×10(-6) M. Circular dichroism (CD) spectra showed that LeIBP, glycosylated or non-glycosylated, is predominantly composed of β-strand secondary structural elements (54.6%), similar to other β-helical antifreeze proteins (AFPs). In thermal hysteresis (TH) activity measurements, native LeIBP was twice more active (0.87 °C at 15 mg/mL) than that of the recombinant IBPs (0.43-0.42 °C at 10.8 mg/mL). This discrepancy is probably due to uncharacterized enhancing factors carried over during ice affinity purification, because glycosylated and non-glycosylated recombinant proteins displayed similarly low activity. Ice recrystallization inhibition (RI) activities of the native and recombinant LeIBPs were comparable. Measurements of CD, TH activity, and RI showed that glycosylation does not cause structural changes and is not required for function. An ice-etching experiment using green fluorescent protein-tagged IBP revealed that LeIBP binds, just as hyperactive AFPs, to both basal and pyramidal prism planes of the ice crystal. Taken together, our results indicate that LeIBP, structurally similar to hyperactive AFPs, is moderately active and that a reversible dimer has no effect on its activity.


Acta Crystallographica Section D-biological Crystallography | 2014

Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1

Hackwon Do; Soon-Jong Kim; Hak Jun Kim; Jun Hyuck Lee

Ice-binding proteins (IBPs) inhibit ice growth through direct interaction with ice crystals to permit the survival of polar organisms in extremely cold environments. FfIBP is an ice-binding protein encoded by the Antarctic bacterium Flavobacterium frigoris PS1. The X-ray crystal structure of FfIBP was determined to 2.1 Å resolution to gain insight into its ice-binding mechanism. The refined structure of FfIBP shows an intramolecular disulfide bond, and analytical ultracentrifugation and analytical size-exclusion chromatography show that it behaves as a monomer in solution. Sequence alignments and structural comparisons of IBPs allowed two groups of IBPs to be defined, depending on sequence differences between the α2 and α4 loop regions and the presence of the disulfide bond. Although FfIBP closely resembles Leucosporidium (recently re-classified as Glaciozyma) IBP (LeIBP) in its amino-acid sequence, the thermal hysteresis (TH) activity of FfIBP appears to be tenfold higher than that of LeIBP. A comparison of the FfIBP and LeIBP structures reveals that FfIBP has different ice-binding residues as well as a greater surface area in the ice-binding site. Notably, the ice-binding site of FfIBP is composed of a T-A/G-X-T/N motif, which is similar to the ice-binding residues of hyperactive antifreeze proteins. Thus, it is proposed that the difference in TH activity between FfIBP and LeIBP may arise from the amino-acid composition of the ice-binding site, which correlates with differences in affinity and surface complementarity to the ice crystal. In conclusion, this study provides a molecular basis for understanding the antifreeze mechanism of FfIBP and provides new insights into the reasons for the higher TH activity of FfIBP compared with LeIBP.


Marine Drugs | 2013

Antifreeze Peptides and Glycopeptides, and Their Derivatives: Potential Uses in Biotechnology

Jeong Kyu Bang; Jun Hyuck Lee; Ravichandran N. Murugan; Sung Gu Lee; Hackwon Do; Hye Yeon Koh; Hye-Eun Shim; Hyun-Cheol Kim; Hak Jun Kim

Antifreeze proteins (AFPs) and glycoproteins (AFGPs), collectively called AF(G)Ps, constitute a diverse class of proteins found in various Arctic and Antarctic fish, as well as in amphibians, plants, and insects. These compounds possess the ability to inhibit the formation of ice and are therefore essential to the survival of many marine teleost fishes that routinely encounter sub-zero temperatures. Owing to this property, AF(G)Ps have potential applications in many areas such as storage of cells or tissues at low temperature, ice slurries for refrigeration systems, and food storage. In contrast to AFGPs, which are composed of repeated tripeptide units (Ala-Ala-Thr)n with minor sequence variations, AFPs possess very different primary, secondary, and tertiary structures. The isolation and purification of AFGPs is laborious, costly, and often results in mixtures, making characterization difficult. Recent structural investigations into the mechanism by which linear and cyclic AFGPs inhibit ice crystallization have led to significant progress toward the synthesis and assessment of several synthetic mimics of AFGPs. This review article will summarize synthetic AFGP mimics as well as current challenges in designing compounds capable of mimicking AFGPs. It will also cover our recent efforts in exploring whether peptoid mimics can serve as structural and functional mimics of native AFGPs.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2013

Purification, characterization and preliminary X-ray diffraction analysis of a cold-active lipase (CpsLip) from the psychrophilic bacterium Colwellia psychrerythraea 34H

Hackwon Do; Jun Hyuck Lee; Mi Hyun Kwon; Hye Eun Song; Jun Yop An; Soo Hyun Eom; Sung Gu Lee; Hak Jun Kim

The putative lipase CpsLip from the psychrophilic bacterium Colwellia psychrerythraea 34H encodes a 34,538 Da, 308-amino-acid protein. In this study, CpsLip (UniProtKB code Q486T5) was expressed as an N-terminal hexahistidine fusion protein in Escherichia coli and purified by affinity and size-exclusion chromatography. The expression and purification of CpsLip enabled characterization of the lipase enzymatic properties of the protein. The optimal activity temperature and pH of the recombinant protein were 298 K and pH 7, respectively. CpsLip maintained over 80% activity in the low-temperature range (278-288 K), thereby suggesting that CpsLip is a cold-active lipase. Substrate-specificity analysis demonstrated that CpsLip exhibits maximum activity towards the C12 acyl group. In addition, sequence-alignment results revealed that CpsLip has a highly conserved catalytic triad in the active site consisting of residues Ser111, Asp135 and His283. Moreover, purified CpsLip was successfully crystallized using the hanging-drop vapour-diffusion method and a complete diffraction data set was collected to 4.0 Å resolution using synchrotron radiation on the BL-5A beamline of the Photon Factory.


Scientific Reports | 2016

Structural understanding of the recycling of oxidized ascorbate by dehydroascorbate reductase (OsDHAR) from Oryza sativa L. japonica

Hackwon Do; Il-Sup Kim; Byoung Wook Jeon; Chang Woo Lee; Ae Kyung Park; Ah Ram Wi; Seung Chul Shin; Hyun Gyu Park; Young-Saeng Kim; Ho-Sung Yoon; Han-Woo Kim; Jun Hyuck Lee

Dehydroascorbate reductase (DHAR) is a key enzyme involved in the recycling of ascorbate, which catalyses the glutathione (GSH)-dependent reduction of oxidized ascorbate (dehydroascorbate, DHA). As a result, DHAR regenerates a pool of reduced ascorbate and detoxifies reactive oxygen species (ROS). In previous experiments involving transgenic rice, we observed that overexpression of DHAR enhanced grain yield and biomass. Since the structure of DHAR is not available, the enzymatic mechanism is not well-understood and remains poorly characterized. To elucidate the molecular basis of DHAR catalysis, we determined the crystal structures of DHAR from Oryza sativa L. japonica (OsDHAR) in the native, ascorbate-bound, and GSH-bound forms and refined their resolutions to 1.9, 1.7, and 1.7 Å, respectively. These complex structures provide the first information regarding the location of the ascorbate and GSH binding sites and their interacting residues. The location of the ascorbate-binding site overlaps with the GSH-binding site, suggesting a ping-pong kinetic mechanism for electron transfer at the common Cys20 active site. Our structural information and mutagenesis data provide useful insights into the reaction mechanism of OsDHAR against ROS-induced oxidative stress in rice.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2012

Crystallization and preliminary X‐ray crystallographic analysis of an ice‐binding protein (FfIBP) from Flavobacterium frigoris PS1. Addendum

Hackwon Do; Jun Hyuck Lee; Sung Gu Lee; Hak Jun Kim

An addendum to the article by Do et al. [(2012) Acta Cryst. F68, 806–809].


Scientific Reports | 2016

Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica

Ae Kyung Park; Il-Sup Kim; Hackwon Do; Byung Wook Jeon; Chang Woo Lee; Soo Jung Roh; Seung Chul Shin; Hyun Gyu Park; Young-Saeng Kim; Yul-Ho Kim; Ho-Sung Yoon; Jun Hyuck Lee; Han-Woo Kim

Ascorbic acid (AsA) maintains redox homeostasis by scavenging reactive oxygen species from prokaryotes to eukaryotes, especially plants. The enzyme monodehydroascorbate reductase (MDHAR) regenerates AsA by catalysing the reduction of monodehydroascorbate, using NADH or NADPH as an electron donor. The detailed recycling mechanism of MDHAR remains unclear due to lack of structural information. Here, we present the crystal structures of MDHAR in the presence of cofactors, nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), and complexed with AsA as well as its analogue, isoascorbic acid (ISD). The overall structure of MDHAR is similar to other iron-sulphur protein reductases, except for a unique long loop of 63–80 residues, which seems to be essential in forming the active site pocket. From the structural analysis and structure-guided point mutations, we found that the Arg320 residue plays a major substrate binding role, and the Tyr349 residue mediates electron transfer from NAD(P)H to bound substrate via FAD. The enzymatic activity of MDHAR favours NADH as an electron donor over NADPH. Our results show, for the first time, structural insights into this preference. The MDHAR-ISD complex structure revealed an alternative binding conformation of ISD, compared with the MDHAR-AsA complex. This implies a broad substrate (antioxidant) specificity and resulting greater protective ability of MDHAR.


Scientific Reports | 2015

Crystal structure of UbiX, an aromatic acid decarboxylase from the psychrophilic bacterium Colwellia psychrerythraea that undergoes FMN-induced conformational changes.

Hackwon Do; Sun-Uk Kim; Choon-Soo Lee; Hyungchae Kim; Hanwool Park; Hyungsang Kim; H. Park; J. H. Lee

The ubiX gene of Colwellia psychrerythraea strain 34H encodes a 3-octaprenyl-4-hydroxybenzoate carboxylase (CpsUbiX, UniProtKB code: Q489U8) that is involved in the third step of the ubiquinone biosynthesis pathway and harbors a flavin mononucleotide (FMN) as a potential cofactor. Here, we report the crystal structures of two forms of CpsUbiX: an FMN-bound wild type form and an FMN-unbound V47S mutant form. CpsUbiX is a dodecameric enzyme, and each monomer possesses a typical Rossmann-fold structure. The FMN-binding domain of UbiX is composed of three neighboring subunits. The highly conserved Gly15, Ser41, Val47, and Tyr171 residues play important roles in FMN binding. Structural comparison of the FMN-bound wild type form with the FMN-free form reveals a significant conformational difference in the C-terminal loop region (comprising residues 170–176 and 195–206). Subsequent computational modeling and liposome binding assay both suggest that the conformational flexibility observed in the C-terminal loops plays an important role in substrate and lipid bindings. The crystal structures presented in this work provide structural framework and insights into the catalytic mechanism of CpsUbiX.


Molecules and Cells | 2015

Crystal Structure and Comparative Sequence Analysis of GmhA from Colwellia psychrerythraea Strain 34H Provides Insight into Functional Similarity with DiaA.

Hackwon Do; Ji-Sook Yun; Chang Woo Lee; Young Jun Choi; Hye-Yeon Kim; Youn-Jung Kim; Hyun Jin Park; Jeong Ho Chang; Jun Hyuck Lee

The psychrophilic organism Colwellia psychrerythraea strain 34H produces extracellular polysaccharide substances to tolerate cold environments. Sedoheptulose 7-phosphate isomerase (GmhA) is essential for producing d-glycero-d-mannoheptose 7-phosphate, a key mediator in the lipopolysaccharide biosynthetic pathway. We determined the crystal structure of GmhA from C. psychrerythraea strain 34H (CpsGmhA, UniProtKB code: Q47VU0) at a resolution of 2.8 Å. The tetrameric structure is similar to that of homologous GmhA structures. Interestingly, one of the catalytic residues, glutamate, which has been reported to be critical for the activity of other homologous GmhA enzymes, is replaced by a glutamine residue in the CpsGmhA protein. We also found differences in the conformations of several other catalytic residues. Extensive structural and sequence analyses reveal that CpsGmhA shows high similarity to Escherichia coli DnaA initiator-associating protein A (DiaA). Therefore, the CpsGmhA structure reported here may provide insight into the structural and functional correlations between GmhA and DiaA among specific microorganisms.

Collaboration


Dive into the Hackwon Do's collaboration.

Top Co-Authors

Avatar

Jun Hyuck Lee

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hak Jun Kim

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chang Woo Lee

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sung Gu Lee

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hak Jun Kim

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Han-Woo Kim

Korea University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ho-Sung Yoon

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Il-Sup Kim

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge