Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hadas Grossman is active.

Publication


Featured researches published by Hadas Grossman.


Journal of Cell Science | 2013

microRNA-125a-3p reduces cell proliferation and migration by targeting Fyn.

Lihi Ninio-Many; Hadas Grossman; Noam Shomron; Dana Chuderland; Ruth Shalgi

Summary Fyn, a member of the Src family kinases (SFKs), has a pivotal role in cell adhesion, proliferation, migration and survival, and its overexpression is associated with several types of cancer. MicroRNAs (miRNAs) play a major role in post-transcriptional repression of protein expression. In light of the significant functions of Fyn, together with studies demonstrating miR-125a as a tumor-suppressing miRNA that is downregulated in several cancer cell types and on our bioinformatics studies presented here, we chose to examine the post-transcription regulation of Fyn by miR-125a-3p in the HEK 293T cell line. We show that Fyn expression can be dramatically reduced by elevated levels of miR-125a-3p. Following this reduction, the activity of proteins downstream of Fyn, such as FAK, paxillin and Akt (proteins known to be overexpressed in various tumors), is also reduced. On a broader level, we show that miR-125a-3p causes an arrest of the cell cycle at the G2/M stage and decreases cell viability and migration, probably in a Fyn-directed manner. The results are reinforced by control experiments conducted using Fyn siRNA and anti-miR-125a-3p, as well as by the fact that numerous cancer cell lines show a significant downregulation of Fyn after mir-125a-3p overexpression. Collectively, we conclude that miR-125a-3p has an important role in the regulation of Fyn expression and of its signaling pathway, which implies that it has a therapeutic potential in overexpressed Fyn-related diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Interleukin-1 deficiency prolongs ovarian lifespan in mice.

Shiri Uri-Belapolsky; Aviv Shaish; Efrat Eliyahu; Hadas Grossman; Mattan Levi; Dana Chuderland; Lihi Ninio-Many; Noa Hasky; David Shashar; Tal Almog; Michal Kandel-Kfir; Dror Harats; Ruth Shalgi; Yehuda Kamari

Significance Females are subjected to a biological clock that dictates the end of the reproductive lifespan, on average, at 50 y of age, whereas fecundity sharply decreases after 30 y of age. Over the past decade, a current trend of postponing childbearing into advanced age has led to a corresponding upward trend in the number of in vitro fertilization (IVF) treatments. Inflammation was reported to affect both IVF outcomes and the ovarian reserve adversely. Identifying a possible culprit, such as IL-1, may offer new insight into the mechanisms responsible for oocyte loss as well as practical interventions, such as IL-1 blockade, which aims to slow down the rate at which oocytes are eliminated and improve IVF outcomes. Oocyte endowment dwindles away during prepubertal and adult life until menopause occurs, and apoptosis has been identified as a central mechanism responsible for oocyte elimination. A few recent reports suggest that uncontrolled inflammation may adversely affect ovarian reserve. We tested the possible role of the proinflammatory cytokine IL-1 in the age-related exhaustion of ovarian reserve using IL-1α and IL-1β–KO mice. IL-1α–KO mice showed a substantially higher pregnancy rate and litter size compared with WT mice at advanced age. The number of secondary and antral follicles was significantly higher in 2.5-mo-old IL-1α–KO ovaries compared with WT ovaries. Serum anti-Müllerian hormone, a putative marker of ovarian reserve, was markedly higher in IL-1α–KO mice from 2.5 mo onward, along with a greater ovarian response to gonadotropins. IL-1β–KO mice displayed a comparable but more subtle prolongation of ovarian lifespan compared with IL-1α–KO mice. The protein and mRNA of both IL-1α and IL-1β mice were localized within the developing follicles (oocytes and granulosa cells), and their ovarian mRNA levels increased with age. Molecular analysis revealed decreased apoptotic signaling [higher B-cell lymphoma 2 (BCL-2) and lower BCL-2–associated X protein levels], along with a marked attenuation in the expression of genes coding for the proinflammatory cytokines IL-1β, IL-6, and TNF-α in ovaries of IL-1α–KO mice compared with WT mice. Taken together, IL-1 emerges as an important participant in the age-related exhaustion of ovarian reserve in mice, possibly by enhancing the expression of inflammatory genes and promoting apoptotic pathways.


The Journal of Clinical Endocrinology and Metabolism | 2013

The Role of Pigment Epithelium-Derived Factor in the Pathophysiology and Treatment of Ovarian Hyperstimulation Syndrome in Mice

Dana Chuderland; Ido Ben-Ami; Ruth Kaplan-Kraicer; Hadas Grossman; Raphael Ron-El; Ruth Shalgi

CONTEXT Ovarian hyperstimulation syndrome (OHSS) is a potentially life-threatening complication of assisted reproduction. OHSS is induced by an ovarian release of vasoactive, angiogenic substances that results in vascular hyperpermeability, leakage, and shift of fluids from blood vessels into the extravascular space with consequent ascites and edema that are attributed to vascular endothelial growth factor (VEGF). OBJECTIVE Our objective was to examine a physiological approach for preventing and treating OHSS, based on negating the VEGF network. DESIGN We used a mouse OHSS model and cultured granulosa cells. MAIN OUTCOME Changes in pigment epithelium-derived factor (PEDF) and VEGF were measured by quantitative PCR and Western blot analysis. OHSS was recorded by changes in body weight and in peritoneal vascular leakage, quantified by the modified Miles vascular permeability assay. RESULTS Granulosa cells produced and secreted the anti-angiogenic factor, PEDF, in an inverse fashion to VEGF. The physiological PEDF-VEGF counterbalance was found to be impaired in the mouse OHSS model. Treatment of OHSS-induced mice with low doses of recombinant PEDF (rPEDF) alleviated OHSS signs including edema (P < .001) and vascular leakage (P < .001) and reduced the level of ovarian VEGF mRNA. Low doses of rPEDF also reduced VEGF mRNA levels in granulosa cells in vitro. However, these effects were not seen at higher doses of rPEDF, suggesting a hormetic mechanism of rPEDF action. CONCLUSION These observations provide a new perspective into the pathophysiology of OHSS, namely, high expression level of VEGF together with a nearly undetectable level of PEDF. A replacement therapy with rPEDF is suggested as an innovative physiological treatment for OHSS. Finally, control of the PEDF-VEGF reciprocal relationship could open new therapeutic avenues for other angiogenic-related fertility pathologies.


Molecular Human Reproduction | 2013

Hormonal regulation of pigment epithelium-derived factor (PEDF) in granulosa cells

Dana Chuderland; Ido Ben-Ami; Ruth Kaplan-Kraicer; Hadas Grossman; Alisa Komsky; Ronit Satchi-Fainaro; Anat Eldar-Boock; Raphael Ron-El; Ruth Shalgi

Angiogenesis is critical for the development of ovarian follicles. Blood vessels are abrogated from the follicle until ovulation, when they invade it to support the developing corpus luteum. Granulosa cells are known to secrete anti-angiogenic factors that shield against premature vascularization; however, their molecular identity is yet to be defined. In this study we address the physiological role of pigment epithelium-derived factor (PEDF), a well-known angiogenic inhibitor, in granulosa cells. We have shown that human and mouse primary granulosa cells express and secrete PEDF, and characterized its hormonal regulation. Stimulation of granulosa cells with increasing doses of estrogen caused a gradual decrease in the PEDF secretion, while stimulation with progesterone caused an abrupt decrease in its secretion. Moreover, We have shown, by time- and dose-response experiments, that the secreted PEDF and vascular endothelial growth factor (VEGF) were inversely regulated by hCG; namely, PEDF level was nearly undetectable under high doses of hCG, while VEGF level was significantly elevated. The anti-angiogenic nature of the PEDF secreted from granulosa cells was examined by migration, proliferation and tube formation assays in cultures of human umbilical vein endothelial cells. Depleting PEDF from primary granulosa cells conditioned media accelerated endothelial cells proliferation, migration and tube formation. Collectively, the dynamic expression of PEDF that inversely portrays VEGF expression may imply its putative role as a physiological negative regulator of follicular angiogenesis.


Human Reproduction | 2015

Gonadotrophin-releasing hormone agonists for fertility preservation: unraveling the enigma?

Noa Hasky; Shiri Uri-Belapolsky; Keren Goldberg; Irit Miller; Hadas Grossman; Salomon M. Stemmer; Irit Ben-Aharon; Ruth Shalgi

STUDY QUESTION Can gonadotrophin-releasing hormone agonists (GnRH-a) preserve long-term fertility when administered prior to and concomitantly with chemotherapy? SUMMARY ANSWER GnRH-a display a differential protective effect on fertility, depending upon the specific chemotherapy-induced mechanism of ovarian injury. WHAT IS KNOWN ALREADY The role of GnRH-a in fertility preservation has been constantly debated and their use is considered experimental due to conflicting clinical evidence and paucity of data regarding their mechanism for ovarian protection. STUDY DESIGN, SIZE, DURATION In vivo model: 7-8 weeks old imprinting control region (ICR) mice were injected with GnRH-a (Leuprolide-acetate) or saline prior to and concomitantly with cyclophosphamide, doxorubicin or saline and sacrificed at various time-points on a longitudinal follow-up; 24 h (n = 36), 1 week (n = 40), 1 month (n = 36) and 9 months (n = 66) post chemotherapy treatment. Blood samples were drawn on Day 0 and on a monthly basis after chemotherapy treatment. On the day of sacrifice, blood samples were drawn and ovaries excised and processed for either immunohistochemistry (IHC), protein or RNA extraction. In vitro model: 21-23 days old Wistar-derived rats were sacrificed, their ovaries excised and primary granulosa cells (PGC) were either isolated for in vitro culture, or processed for immunofluorescence (IF) as well as for protein or RNA extraction. MATERIALS, SETTING, METHODS Ovarian reserve was estimated by serial measurements of serum anti-mullerian hormone (AMH), quantified by the AMH Gen II ELISA assay. Ovarian AMH and phosphorylated Akt (pAkt) were detected by immunoblotting. Vascular endothelial growth factor (VEGF) was measured by quantitative PCR. Ovarian GnRH receptor (GnRHR), AMH and CD34 were visualized by IHC, and apoptosis was evaluated using TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labeling (TUNEL). MAIN RESULTS AND THE ROLE OF CHANCE Cyclophosphamide-induced ovarian injury caused a prompt decrease in AMH level (P < 0.01) and a further long-term decline in serum AMH (P = 0.017), indicating damage to the ovarian reserve. Pretreatment with GnRH-a diminished AMH-decrease (P < 0.05) and maintained serum AMH level in the long run (P < 0.05). Doxorubicin-exerted ovarian-vascular-injury is also displayed by an acute increase in ovarian VEGF level (P < 0.05) and a sustained decrease in serum AMH level (P < 0.001). This was followed by ovarian recovery manifested by increased neovascularization. GnRH-a delayed the recovery in AMH level and decreased the level of VEGF (P < 0.001), thus interfering with the vascular recovery subsequent to doxorubicin-induced vascular damage. LIMITATIONS, REASONS FOR CAUTION To portray the differential mechanism of each chemotherapy, cyclophosphamide and doxorubicin were given separately, whereas most of the clinical protocols include several types of chemotherapies. Thus, future study should explore a prospective evaluation of various chemotherapies, as well as combined chemotherapeutic protocols. WIDER IMPLICATIONS OF THE FINDINGS Our study demonstrates that different chemotherapy agents affect the ovary via diverse mechanisms and thus the administration of GnRH-a concomitantly, could be beneficial to a subpopulation of patients treated with cyclophosphamide-based protocols. STUDY FUNDING/COMPETING INTERESTS This work was partially supported by a grant from the Israel Science Foundation (ISF) to I.B.-A. The authors have no conflict of interest to disclose.


Molecular and Cellular Endocrinology | 2014

Hormonal regulation of pigment epithelium-derived factor (PEDF) expression in the endometrium

Dana Chuderland; Ido Ben-Ami; Shevach Friedler; Noa Hasky; Lihi Ninio-Many; Keren Goldberg; Hadas Bar-Joseph; Hadas Grossman; Ruth Shalgi

Pigment epithelium-derived factor (PEDF) is highly expressed in the female reproductive system and is subjected to regulation by steroid hormones in the ovary. As the uterine endometrium exhibits morphological and functional changes in response to estrogen (E2) and progesterone (P4), we aimed at characterizing the expression of PEDF in this component of the female reproductive tract and further at exploring the hormonal regulation of its expression. We found that PEDF is expressed in human and mouse endometrium. We further showed that this expression is subjected to regulation by steroid hormones, both in vivo and in vitro, as follows: E2 decreased PEDF expression and P4 increased its levels. In human endometrial samples, PEDF levels were dynamically altered along the menstrual cycle; they were low at the proliferative and early secretory phases and significantly higher at the late secretory phase. The expression levels of PEDF were inversely correlated to that of vascular endothelial growth factor (VEGF). We also showed that PEDF receptor was expressed in the endometrium and that its stimulation reduced VEGF expression. Illustrating the pattern of PEDF expression during the menstrual cycle may contribute to our understanding of the endometrial complexity.


Molecular Cancer Therapeutics | 2015

Pigment Epithelium–Derived Factor Alleviates Tamoxifen-Induced Endometrial Hyperplasia

Keren Goldberg; Hadas Bar-Joseph; Hadas Grossman; Noa Hasky; Shiri Uri-Belapolsky; Salomon M. Stemmer; Dana Chuderland; Ruth Shalgi; Irit Ben-Aharon

Tamoxifen is a cornerstone component of adjuvant endocrine therapy for patients with hormone-receptor–positive breast cancer. Its significant adverse effects include uterine hyperplasia, polyps, and increased risk of endometrial cancer. However, the underlying molecular mechanism remains unclear. Excessive angiogenesis, a hallmark of tumorigenesis, is a result of disrupted balance between pro- and anti-angiogenic factors. VEGF is a pro-angiogenic factor shown to be elevated by tamoxifen in the uterus. Pigment epithelium–derived factor (PEDF) is a potent anti-angiogenic factor that suppresses strong pro-angiogenic factors, such as VEGF. Our aim was to investigate whether angiogenic balance plays a role in tamoxifen-induced uterine pathologies, elucidate the molecular impairment in that network, and explore potential intervention to offset the proposed imbalance elicited by tamoxifen. Using in vivo mouse models, we demonstrated that tamoxifen induced a dose-dependent shift in endogenous uterine angiogenic balance favoring VEGF over PEDF. Treatment with recombinant PEDF (rPEDF) abrogated tamoxifen-induced uterine hyperplasia and VEGF elevation, resulting in reduction of blood vessels density. Exploring the molecular mechanism revealed that tamoxifen promoted survival and malignant transformation pathways, whereas rPEDF treatment prevents these changes. Activation of survival pathways was decreased, demonstrated by reduction in AKT phosphorylation concomitant with elevation in JNK phosphorylation. Estrogen receptor-α and c-Myc oncoprotein levels were reduced. Our findings provide novel insight into the molecular mechanisms tamoxifen induces in the uterus, which may become the precursor events of subsequent endometrial hyperplasia and cancer. We demonstrate that rPEDF may serve as a useful intervention to alleviate the risk of tamoxifen-induced endometrial pathologies. Mol Cancer Ther; 14(12); 2840–9. ©2015 AACR.


Scientific Reports | 2017

Regulation of GVBD in mouse oocytes by miR-125a-3p and Fyn kinase through modulation of actin filaments

Hadas Grossman; Efrat Har-Paz; Natalie Gindi; Mattan Levi; Irit Miller; Nava Nevo; Dalia Galiani; Nava Dekel; Ruth Shalgi

Meiotically arrested oocytes are characterized by the presence of the nuclear structure known as germinal-vesicle (GV), the breakdown of which (GVBD) is associated with resumption of meiosis. Fyn is a pivotal factor in resumption of the first meiotic division; its inhibition markedly decreases the fraction of oocytes undergoing GVBD. Here, we reveal that in mouse oocytes Fyn is post-transcriptionally regulated by miR-125a-3p. We demonstrate that in oocytes resuming meiosis miR-125a-3p and Fyn exhibit a reciprocal expression pattern; miR-125a-3p decreases alongside with an increase in Fyn expression. Microinjection of miR-125a-3p inhibits GVBD, an effect that is markedly reduced by Fyn over-expression, and impairs the organization of the actin rim surrounding the nucleus. Lower rate of GVBD is also observed in oocytes exposed to cytochalasin-D or blebbistatin, which interfere with actin polymerization and contractility of actin bundles, respectively. By down-regulating Fyn in HEK-293T cells, miR-125a-3p reduces the interaction between actin and A-type lamins, which constitute the nuclear-lamina. Our findings suggest a mechanism, by which a decrease in miR-125a-3p during oocyte maturation facilitates GVBD by allowing Fyn up-regulation and the resulting stabilization of the interaction between actin and A-type lamins.


Oncoscience | 2014

MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells

Lihi Ninio-Many; Hadas Grossman; Mattan Levi; Sofia Zilber; Ilan Tsarfaty; Noam Shomron; Anna Tuvar; Dana Chuderland; Salomon M. Stemmer; Irit Ben-Aharon; Ruth Shalgi


Human Reproduction | 2013

A physiological approach for treating endometriosis by recombinant pigment epithelium-derived factor (PEDF)

Dana Chuderland; Noa Hasky; Ido Ben-Ami; Ruth Kaplan-Kraicer; Hadas Grossman; Ruth Shalgi

Collaboration


Dive into the Hadas Grossman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge