Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hadi Mohammadi is active.

Publication


Featured researches published by Hadi Mohammadi.


Medical Engineering & Physics | 2011

Prosthetic aortic heart valves: Modeling and design

Hadi Mohammadi; Kibret Mequanint

Although heart valve replacement is among the most common cardiovascular surgical procedures, their outcome is often difficult to predict. One of the reasons is the design and choice of the materials used for the fabrication of the prostheses. This review paper describes the use of modeling techniques in prosthetic heart valve (HV) design and aims at the justification and development of a polymer based trileaflet mechanical heart valve (MHV). The closing/opening phase behavior of the bileaflet MHV was investigated. The potential problem of valve failure due to crack propagation in the brittle pyrolytic carbon leaflet was also discussed. These studies suggest that although bileaflet MHV performs satisfactorily, there are justifications for improvement. Since the native aortic HV is trileaflet and made of anisotropic and hyperelastic tissue, one possible approach to a better MHV design is based on our ability to closely mimic the natural geometry and biomaterial properties.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2009

Design and simulation of a poly(vinyl alcohol)—bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis

Hadi Mohammadi; Derek R. Boughner; Leonardo E. Millon; Wankei Wan

Abstract In this study, a polymeric aortic heart valve made of poly(vinyl alcohol) (PVA)—bacterial cellulose (BC) nanocomposite is simulated and designed using a hyperelastic non-linear anisotropic material model. A novel nanocomposite biomaterial combination of 15 wt % PVA and 0.5 wt % BC is developed in this study. The mechanical properties of the synthesized PVA—BC are similar to those of the porcine heart valve in both the principal directions. To design the geometry of the leaflets an advance surfacing technique is employed. A Galerkin-based non-linear finite element method is applied to analyse the mechanical behaviour of the leaflet in the closing and opening phases under physiological conditions. The model used in this study can be implemented in mechanical models for any soft tissues such as articular cartilage, tendon, and ligament.


Medical Engineering & Physics | 2009

Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method

Hadi Mohammadi; Fereshteh Bahramian; Wankei Wan

Modeling soft tissue using the finite element method is one of the most challenging areas in the field of biomechanical engineering. To date, many models have been developed to describe heart valve leaflet tissue mechanics, which are accurate to some extent. Nevertheless, there is no comprehensive method to modeling soft tissue mechanics, This is because (1) the degree of anisotropy in the heart valve leaflet changes layer by layer due to a variety of collagen fiber densities and orientations that cannot be taken into account in the model and also (2) a constitutive material model fully describing the mechanical properties of the leaflet structure is not available in the literature. In this framework, we develop a new high-order element using p-type finite element formulation to create anisotropic material properties similar to those of the heart valve leaflet tissue in only one single element. This element also takes the nonlinearity of the leaflet tissue into consideration using a bilinear material model. This new element is composed a two-dimensional finite element in the principal directions of leaflet tissue and a p-type finite element in the direction of thickness. The proposed element is easy to implement, much more efficient than standard elements available in commercial finite element packages. This study is one step towards the modeling of soft tissue mechanics using a meshless finite element approach to be applied in real-time haptic feedback of soft-tissue models in virtual reality simulation.


Materials | 2014

Blends and Nanocomposite Biomaterials for Articular Cartilage Tissue Engineering

Azadehsadat Hashemi Doulabi; Kibret Mequanint; Hadi Mohammadi

This review provides a comprehensive assessment on polymer blends and nanocomposite systems for articular cartilage tissue engineering applications. Classification of various types of blends including natural/natural, synthetic/synthetic systems, their combination and nanocomposite biomaterials are studied. Additionally, an inclusive study on their characteristics, cell responses ability to mimic tissue and regenerate damaged articular cartilage with respect to have functionality and composition needed for native tissue, are also provided.


Cardiovascular Engineering | 2009

Boundary Conditions in Simulation of Stenosed Coronary Arteries

Hadi Mohammadi; Fereshteh Bahramian

A powerful alternative means to studying hemodynamics in diseased or healthy coronary arteries can be achieved by providing a numerical model in which blood flow can be virtually simulated, for instance, using the computational fluid dynamics (CFD) method. In fact, it is well documented that CFD allows reliable physiological blood flow simulation and measurements of flow parameters. A requisite for obtaining reliable results from coronary CFD is to use exact anatomical models and realistic boundary conditions. To date, in almost all of the modeling studies on hemodynamics of stenosed coronary arteries, a velocity based boundary conditions has been assigned. The objective of this study is to show that inlet velocity actually depends on the degree of stenosis and thus for severe constriction in coronary artery, a velocity based boundary conditions cannot be realistic. We then prove that regardless of severity of stenosis in coronary arteries, the upstream pressure, systemic pressure, is always constant, thus, should be used as boundary conditions instead. The two sets of boundary conditions are implemented to demonstrate the robustness of each in modeling of stenosed coronary artery in a CFD study. These boundary conditions are applied in a stenosed cylindrical pipe including three categories of symmetrical stenosis (mild, moderate and severe stenosis starting from 15 to 95% diameter reduction) for steady state and pulsatile flow. Results strongly indicate that inlet velocity boundary conditions are no longer valid when effective diameter in stenosis goes below ~2.8xa0mm (a healthy diameter is considered 3.2xa0mm) which corresponds to 10–15% diameter reduction. Further work will determine the effect of flow reduction on the oxygen tension in blood to better define conditions for clinical symptoms such as angina.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2008

A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve

Hadi Mohammadi; R.J. Klassen; Wankei Wan

Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 μm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2×109 cycles) and, with an initial crack length of 170 μm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1×107 cycles). For an initial crack length greater than 170 μm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic loads.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2015

A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase

Mehdi Jahandardoost; Guy Fradet; Hadi Mohammadi

A powerful alternative means to study the hemodynamics of bileaflet mechanical heart valves is the computational fluid dynamics method. It is well recognized that computational fluid dynamics allows reliable physiological blood flow simulation and measurements of flow parameters. To date, in almost all of the modeling studies on the hemodynamics of bileaflet mechanical heart valves, a velocity (mass flow)-based boundary condition and an axisymmetric geometry for the aortic root have been assigned, which, to some extent, are erroneous. Also, there have been contradictory reports of the profile of velocity in downstream of leaflets, that is, in some studies, it is suggested that the maximum blood velocity occurs in the lateral orifice, and in some other studies, it is postulated that the maximum velocities in the main and lateral orifices are identical. The reported values for the peak velocities range from 1 to 3u2009m/s, which highly depend on the model assumptions. The objective of this study is to demonstrate the importance of the exact anatomical model of the aortic root and the realistic boundary conditions in the hemodynamics of the bileaflet mechanical heart valves. The model considered in this study is based on the St Jude Medical valve in a novel modeling platform. Through a more realistic geometrical model for the aortic root and the St Jude Medical valve, we have developed a new set of boundary conditions in order to be used for the assessment of the hemodynamics of aortic bileaflet mechanical heart valves. The results of this study are significant for the design improvement of conventional bileaflet mechanical heart valves and for the design of the next generation of prosthetic valves.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2013

Computational aspects in mechanical modeling of the articular cartilage tissue

Hadi Mohammadi; Kibret Mequanint; Walter Herzog

This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2016

Hemodynamic study of the elliptic St. Jude Medical valve: A computational study.

Mehdi Jahandardoost; Guy Fradet; Hadi Mohammadi

Despite successful implantation of St. Jude Medical bileaflet mechanical heart valves, red blood cell lysis and thrombogenic complications associated with these types of valves are yet to be addressed. In our previous study, we proposed an elliptic housing where 10% ovality was applied to the housing of St. Jude Medical valves. Our preliminary results suggested that the overall hemodynamic performance of St. Jude Medical valves improved in both the closing and opening phases. In this study, we evaluated the hemodynamics around the leaflets in the opening phase using a more sophisticated computational platform, computational fluid dynamics. Results suggested both lower shear stress and wall shear stress values and an overall improved hemodynamic performance in the proposed design. This improvement is characterized by lower values of shear stress and wall shear stress in the regions downstream of the leaflets, lower pressure drop across the valve and smaller recirculation zones in the sinuses areas. The proposed design may open a new chapter in the concept of design and hemodynamic improvement of the next generation of mechanical heart valves.


Cardiovascular System | 2015

Elliptic st. jude bileaflet mechanical heart valves

Hadi Mohammadi; Mehdi Jahandardoost; Guy Fradet

Abstract n St. Jude Medical (SJM) bileaflet mechanical valves were approved by the Food and Drug Administration in 1977. The SJM valve design consists of two semicircular leaflets which pivot on hinges. Compared to other mechanical heart

Collaboration


Dive into the Hadi Mohammadi's collaboration.

Top Co-Authors

Avatar

Guy Fradet

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kibret Mequanint

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Fereshteh Bahramian

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehdi Jahandardoost

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Wankei Wan

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Gholamreza Naser

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Peyman Yousefi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Derek R. Boughner

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Emily Earl

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge