Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hady Wirawan Lauw is active.

Publication


Featured researches published by Hady Wirawan Lauw.


conference on information and knowledge management | 2010

Detecting product review spammers using rating behaviors

Ee-Peng Lim; Viet-An Nguyen; Nitin Jindal; Bing Liu; Hady Wirawan Lauw

This paper aims to detect users generating spam reviews or review spammers. We identify several characteristic behaviors of review spammers and model these behaviors so as to detect the spammers. In particular, we seek to model the following behaviors. First, spammers may target specific products or product groups in order to maximize their impact. Second, they tend to deviate from the other reviewers in their ratings of products. We propose scoring methods to measure the degree of spam for each reviewer and apply them on an Amazon review dataset. We then select a subset of highly suspicious reviewers for further scrutiny by our user evaluators with the help of a web based spammer evaluation software specially developed for user evaluation experiments. Our results show that our proposed ranking and supervised methods are effective in discovering spammers and outperform other baseline method based on helpfulness votes alone. We finally show that the detected spammers have more significant impact on ratings compared with the unhelpful reviewers.


conference on information and knowledge management | 2007

Measuring article quality in wikipedia: models and evaluation

Meiqun Hu; Ee-Peng Lim; Aixin Sun; Hady Wirawan Lauw; Ba-Quy Vuong

Wikipedia has grown to be the world largest and busiest free encyclopedia, in which articles are collaboratively written and maintained by volunteers online. Despite its success as a means of knowledge sharing and collaboration, the public has never stopped criticizing the quality of Wikipedia articles edited by non-experts and inexperienced contributors. In this paper, we investigate the problem of assessing the quality of articles in collaborative authoring of Wikipedia. We propose three article quality measurement models that make use of the interaction data between articles and their contributors derived from the article edit history. Our B<scp>asic</scp> model is designed based on the mutual dependency between article quality and their author authority. The P<scp>eer</scp>R<scp>eview</scp> model introduces the review behavior into measuring article quality. Finally, our P<scp>rob</scp>R<scp>eview</scp> models extend P<scp>eer</scp>R<scp>eview</scp> with partial reviewership of contributors as they edit various portions of the articles. We conduct experiments on a set of well-labeled Wikipedia articles to evaluate the effectiveness of our quality measurement models in resembling human judgement.


electronic commerce | 2008

Predicting trusts among users of online communities: an epinions case study

Haifeng Liu; Ee-Peng Lim; Hady Wirawan Lauw; Minh-Tam Le; Aixin Sun; Jaideep Srivastava; Young Ae Kim

Trust between a pair of users is an important piece of information for users in an online community (such as electronic commerce websites and product review websites) where users may rely on trust information to make decisions. In this paper, we address the problem of predicting whether a user trusts another user. Most prior work infers unknown trust ratings from known trust ratings. The effectiveness of this approach depends on the connectivity of the known web of trust and can be quite poor when the connectivity is very sparse which is often the case in an online community. In this paper, we therefore propose a classification approach to address the trust prediction problem. We develop a taxonomy to obtain an extensive set of relevant features derived from user attributes and user interactions in an online community. As a test case, we apply the approach to data collected from Epinions, a large product review community that supports various types of interactions as well as a web of trust that can be used for training and evaluation. Empirical results show that the trust among users can be effectively predicted using pre-trained classifiers.


Computational and Mathematical Organization Theory | 2005

Social Network Discovery by Mining Spatio-Temporal Events

Hady Wirawan Lauw; Ee-Peng Lim; Hwee Hwa Pang; Teck-Tim Tan

Knowing patterns of relationship in a social network is very useful for law enforcement agencies to investigate collaborations among criminals, for businesses to exploit relationships to sell products, or for individuals who wish to network with others. After all, it is not just what you know, but also whom you know, that matters. However, finding out who is related to whom on a large scale is a complex problem. Asking every single individual would be impractical, given the huge number of individuals and the changing dynamics of relationships. Recent advancement in technology has allowed more data about activities of individuals to be collected. Such data may be mined to reveal associations between these individuals. Specifically, we focus on data having space and time elements, such as logs of peoples movement over various locations or of their Internet activities at various cyber locations. Reasoning that individuals who are frequently found together are likely to be associated with each other, we mine from the data instances where several actors co-occur in space and time, presumably due to an underlying interaction. We call these spatio-temporal co-occurrences events, which we use to establish relationships between pairs of individuals. In this paper, we propose a model for constructing a social network from events, and provide an algorithm that mines these events from the data. Experiments on a real-life data tracking peoples accesses to cyber locations have also yielded encouraging results.


IEEE Transactions on Knowledge and Data Engineering | 2013

Generative Models for Item Adoptions Using Social Correlation

Freddy Chong Tat Chua; Hady Wirawan Lauw; Ee-Peng Lim

Users face many choices on the web when it comes to choosing which product to buy, which video to watch, and so on. In making adoption decisions, users rely not only on their own preferences, but also on friends. We call the latter social correlation, which may be caused by the homophily and social influence effects. In this paper, we focus on modeling social correlation on users item adoptions. Given a user-user social graph and an item-user adoption graph, our research seeks to answer the following questions: Whether the items adopted by a user correlate with items adopted by her friends, and how to model item adoptions using social correlation. We propose a social correlation framework that considers a social correlation matrix representing the degrees of correlation from every user to the users friends, in addition to a set of latent factors representing topics of interests of individual users. Based on the framework, we develop two generative models, namely sequential and unified, and the corresponding parameter estimation approaches. From each model, we devise the social correlation only and hybrid methods for predicting missing adoption links. Experiments on LiveJournal and Epinions data sets show that our proposed models outperform the approach based on latent factors only (LDA).


IEEE Transactions on Knowledge and Data Engineering | 2012

Organizing User Search Histories

Heasoo Hwang; Hady Wirawan Lauw; Lise Getoor; Alexandros Ntoulas

Users are increasingly pursuing complex task-oriented goals on the web, such as making travel arrangements, managing finances, or planning purchases. To this end, they usually break down the tasks into a few codependent steps and issue multiple queries around these steps repeatedly over long periods of time. To better support users in their long-term information quests on the web, search engines keep track of their queries and clicks while searching online. In this paper, we study the problem of organizing a users historical queries into groups in a dynamic and automated fashion. Automatically identifying query groups is helpful for a number of different search engine components and applications, such as query suggestions, result ranking, query alterations, sessionization, and collaborative search. In our approach, we go beyond approaches that rely on textual similarity or time thresholds, and we propose a more robust approach that leverages search query logs. We experimentally study the performance of different techniques, and showcase their potential, especially when combined together.


siam international conference on data mining | 2007

Summarizing Review Scores of "Unequal" Reviewers.

Hady Wirawan Lauw; Ee-Peng Lim; Ke Wang

A frequently encountered problem in decision making is the following review problem: review a large number of objects and select a small number of the best ones. An example is selecting conference papers from a large number of submissions. This problem involves two sub-problems: assigning reviewers to each object, and summarizing reviewers’ scores into an overall score that supposedly reflects the quality of an object. In this paper, we address the score summarization sub-problem for the scenario where a small number of reviewers evaluate each object. Simply averaging the scores may not work as even a single reviewer could influence the average significantly. We recognize that reviewers are not necessarily on an equal ground and propose the notion of “leniency” to model this difference of reviewers. Two insights underpin our approach: (1) the “leniency” of a reviewer depends on how s/he evaluates objects as well as on how other reviewers evaluate the same set of objects, (2) the “leniency” of a reviewer and the “quality” of objects evaluated exhibit a mutual dependency relationship. These insights motivate us to develop a model that solves both “leniency” and “quality” simultaneously. We study the effectiveness of this model on a real-life dataset.


IEEE Transactions on Knowledge and Data Engineering | 2012

Entity Synonyms for Structured Web Search

Tao Cheng; Hady Wirawan Lauw; Stelios Paparizos

Nowadays, there are many queries issued to search engines targeting at finding values from structured data (e.g., movie showtime of a specific location). In such scenarios, there is often a mismatch between the values of structured data (how content creators describe entities) and the web queries (how different users try to retrieve them). Therefore, recognizing the alternative ways people use to reference an entity, is crucial for structured web search. In this paper, we study the problem of automatic generation of entity synonyms over structured data toward closing the gap between users and structured data. We propose an offline, data-driven approach that mines query logs for instances where content creators and web users apply a variety of strings to refer to the same webpages. This way, given a set of strings that reference entities, we generate an expanded set of equivalent strings (entity synonyms) for each entity. Our framework consists of three modules: candidate generation, candidate selection, and noise cleaning. We further study the cause of the problem through the identification of different entity synonym classes. The proposed method is verified with experiments on real-life data sets showing that we can significantly increase the coverage of structured web queries with good precision.


international conference on data engineering | 2010

Fuzzy matching of Web queries to structured data

Tao Cheng; Hady Wirawan Lauw; Stelios Paparizos

Recognizing the alternative ways people use to reference an entity, is important for many Web applications that query structured data. In such applications, there is often a mismatch between how content creators describe entities and how different users try to retrieve them. In this paper, we consider the problem of determining whether a candidate query approximately matches with an entity. We propose an off-line, data-driven, bottom-up approach that mines query logs for instances where Web content creators and Web users apply a variety of strings to refer to the same Web pages. This way, given a set of strings that reference entities, we generate an expanded set of equivalent strings for each entity. The proposed method is verified with experiments on real-life data sets showing that we can dramatically increase the queries that can be matched.


ACM Transactions on The Web | 2012

Quality and Leniency in Online Collaborative Rating Systems

Hady Wirawan Lauw; Ee-Peng Lim; Ke Wang

The emerging trend of social information processing has resulted in Web users’ increased reliance on user-generated content contributed by others for information searching and decision making. Rating scores, a form of user-generated content contributed by reviewers in online rating systems, allow users to leverage others’ opinions in the evaluation of objects. In this article, we focus on the problem of summarizing the rating scores given to an object into an overall score that reflects the object’s quality. We observe that the existing approaches for summarizing scores largely ignores the effect of reviewers exercising different standards in assigning scores. Instead of treating all reviewers as equals, our approach models the leniency of reviewers, which refers to the tendency of a reviewer to assign higher scores than other coreviewers. Our approach is underlined by two insights: (1) The leniency of a reviewer depends not only on how the reviewer rates objects, but also on how other reviewers rate those objects and (2) The leniency of a reviewer and the quality of rated objects are mutually dependent. We develop the leniency-aware quality, or LQ model, which solves leniency and quality simultaneously. We introduce both an exact and a ranked solution to the model. Experiments on real-life and synthetic datasets show that LQ is more effective than comparable approaches. LQ is also shown to perform consistently better under different parameter settings.

Collaboration


Dive into the Hady Wirawan Lauw's collaboration.

Top Co-Authors

Avatar

Ee-Peng Lim

Singapore Management University

View shared research outputs
Top Co-Authors

Avatar

Aixin Sun

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Hwee Hwa Pang

Singapore Management University

View shared research outputs
Top Co-Authors

Avatar

Ke Wang

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar

Ba-Quy Vuong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Freddy Chong Tat Chua

Singapore Management University

View shared research outputs
Top Co-Authors

Avatar

Minh-Tam Le

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge