Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hae Joo Kang is active.

Publication


Featured researches published by Hae Joo Kang.


Science | 2007

Stabilizing isopeptide bonds revealed in Gram-positive bacterial pilus structure

Hae Joo Kang; Fasséli Coulibaly; Fiona Clow; Thomas Proft; Edward N. Baker

Many bacterial pathogens have long, slender pili through which they adhere to host cells. The crystal structure of the major pilin subunit from the Gram-positive human pathogen Streptococcus pyogenes at 2.2 angstroms resolution reveals an extended structure comprising two all-β domains. The molecules associate in columns through the crystal, with each carboxyl terminus adjacent to a conserved lysine of the next molecule. This lysine forms the isopeptide bonds that link the subunits in native pili, validating the relevance of the crystal assembly. Each subunit contains two lysine-asparagine isopeptide bonds generated by an intramolecular reaction, and we find evidence for similar isopeptide bonds in other cell surface proteins of Gram-positive bacteria. The present structure explains the strength and stability of such Gram-positive pili and could facilitate vaccine development.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds

Hae Joo Kang; Neil G. Paterson; Andrew H. Gaspar; Hung Ton-That; Edward N. Baker

Cell-surface pili are important virulence factors that enable bacterial pathogens to adhere to specific host tissues and modulate host immune response. Relatively little is known about the structure of Gram-positive bacterial pili, which are built by the sortase-catalyzed covalent crosslinking of individual pilin proteins. Here we report the 1.6-Å resolution crystal structure of the shaft pilin component SpaA from Corynebacterium diphtheriae, revealing both common and unique features. The SpaA pilin comprises 3 tandem Ig-like domains, with characteristic folds related to those typically found in non-pilus adhesins. Whereas both the middle and the C-terminal domains contain an intramolecular Lys–Asn isopeptide bond, previously detected in the shaft pilins of Streptococcus pyogenes and Bacillus cereus, the middle Ig-like domain also harbors a calcium ion, and the C-terminal domain contains a disulfide bond. By mass spectrometry, we show that the SpaA monomers are cross-linked in the assembled pili by a Lys–Thr isopeptide bond, as predicted by previous genetic studies. Together, our results reveal that despite profound dissimilarities in primary sequences, the shaft pilins of Gram-positive pathogens have strikingly similar tertiary structures, suggesting a modular backbone construction, including stabilizing intermolecular and intramolecular isopeptide bonds.


Trends in Biochemical Sciences | 2011

Intramolecular isopeptide bonds: protein crosslinks built for stress?

Hae Joo Kang; Edward N. Baker

The recent discovery of intramolecular isopeptide bonds formed between lysine and asparagine residues in certain bacterial cell-surface proteins represents a new component in natures toolbox for stabilising proteins. Although isopeptide bonds are well known as intermolecular crosslinks in processes such as ubiquitylation, these intramolecular isopeptide bonds form autocatalytically during protein folding, as the reacting groups are brought together in a hydrophobic environment. First identified in the Ig-like pilin subunits of Gram-positive bacterial pili, these internal crosslinks provide stabilisation against chemical, thermal and mechanical stress and provide new opportunities for applications in biotechnology. The crucial role of structural biology and mass spectrometry in their discovery and characterisation raises the likelihood that further novel post-translational modifications resulting from intramolecular reactions in proteins await discovery.


Journal of Biological Chemistry | 2009

Intramolecular Isopeptide Bonds Give Thermodynamic and Proteolytic Stability to the Major Pilin Protein of Streptococcus pyogenes

Hae Joo Kang; Edward N. Baker

The pili expressed by Streptococcus pyogenes and certain other Gram-positive bacterial pathogens are based on a polymeric backbone in which individual pilin subunits are joined end-to-end by covalent isopeptide bonds through the action of sortase enzymes. The crystal structure of the major pilin of S. pyogenes, Spy0128, revealed that each domain of the two domain protein contained an intramolecular isopeptide bond cross-link joining a Lys side chain to an Asn side chain. In the present work, mutagenesis was used to create mutant proteins that lacked either one isopeptide bond (E117A, N168A, and E258A mutants) or both isopeptide bonds (E117A/E258A). Both the thermal stability and proteolytic stability of Spy0128 were severely compromised by loss of the isopeptide bonds. Unfolding experiments, monitored by circular dichroism, revealed a transition temperature Tm of 85 °C for the wild type protein. In contrast, mutants with only one isopeptide bond showed biphasic unfolding, with the domain lacking an isopeptide bond having a Tm that was ∼30 °C lower than the unaltered domain. High resolution crystal structures of the E117A and N168A mutants showed that the loss of an isopeptide bond did not change the overall pilin structure but caused local disturbance of the protein core that was greater for E117A than for N168A. These effects on stability appear also to be important for pilus assembly.


Current Opinion in Structural Biology | 2012

Structure and assembly of Gram-positive bacterial pili: unique covalent polymers.

Hae Joo Kang; Edward N. Baker

Bacterial pili are long, multi-subunit protein assemblies that extend from bacterial surfaces, mediating adhesion and colonisation. The recently characterised pili expressed by Gram-positive pathogens represent a novel variation; completely covalent polymers in which sortase-mediated isopeptide bonds link successive pilin subunits. Recent structural studies of the component pilins have revealed a common pattern of tandem immunoglobulin (Ig)-like domains, joined end-on-end. This long thin assembly is further stabilised by autocatalytically generated isopeptide bond crosslinks within the domains, joining Lys and Asn(or Asp) side chains. Specialised subunits at the tip and the base complete the assembly, with the tip pilins presenting novel adhesive structures.


Journal of Biological Chemistry | 2010

Crystal Structure of the Minor Pilin FctB Reveals Determinants of Group A Streptococcal Pilus Anchoring

Christian Linke; Paul G. Young; Hae Joo Kang; Richard D. Bunker; Martin Middleditch; Tom T. Caradoc-Davies; Thomas Proft; Edward N. Baker

Cell surface pili are polymeric protein assemblies that enable bacteria to adhere to surfaces and to specific host tissues. The pili expressed by Gram-positive bacteria constitute a unique paradigm in which sortase-mediated covalent linkages join successive pilin subunits like beads on a string. These pili are formed from two or three distinct types of pilin subunit, typically encoded in small gene clusters, often with their cognate sortases. In Group A streptococci (GAS), a major pilin forms the polymeric backbone, whereas two minor pilins are located at the tip and the base. Here, we report the 1.9-Å resolution crystal structure of the GAS basal pilin FctB, revealing an immunoglobulin (Ig)-like N-terminal domain with an extended proline-rich tail. Unexpected structural homology between the FctB Ig-like domain and the N-terminal domain of the GAS shaft pilin helps explain the use of the same sortase for polymerization of the shaft and its attachment to FctB. It also enabled the identification, from mass spectral data, of the lysine residue involved in the covalent linkage of FctB to the shaft. The proline-rich tail forms a polyproline-II helix that appears to be a common feature of the basal (cell wall-anchoring) pilins. Together, our results indicate distinct structural elements in the pilin proteins that play a role in selecting for the appropriate sortases and thereby help orchestrate the ordered assembly of the pilus.


PLOS ONE | 2011

Crystal Structure of Spy0129, a Streptococcus pyogenes Class B Sortase Involved in Pilus Assembly

Hae Joo Kang; Fasséli Coulibaly; Thomas Proft; Edward N. Baker

Sortase enzymes are cysteine transpeptidases that mediate the covalent attachment of substrate proteins to the cell walls of Gram-positive bacteria, and thereby play a crucial role in virulence, infection and colonisation by pathogens. Many cell-surface proteins are anchored by the housekeeping sortase SrtA but other more specialised sortases exist that attach sub-sets of proteins or function in pilus assembly. The sortase Spy0129, or SrtC1, from the M1 SF370 strain of Streptococcus pyogenes is responsible for generating the covalent linkages between the pilin subunits in the pili of this organism. The crystal structure of Spy0129 has been determined at 2.3 Å resolution (R = 20.4%, Rfree  = 26.0%). The structure shows that Spy0129 is a class B sortase, in contrast to other characterised pilin polymerases, which belong to class C. Spy0129 lacks a flap believed to function in substrate recognition in class C enzymes and instead has an elaborated β6/β7 loop. The two independent Spy0129 molecules in the crystal show differences in the positions and orientations of the catalytic Cys and His residues, Cys221 and His126, correlated with movements of the β7/β8 and β4/β5 loops that respectively follow these residues. Bound zinc ions stabilise these alternative conformations in the crystal. This conformational variability is likely to be important for function although there is no evidence that zinc is involved in vivo.


Journal of Bacteriology | 2010

Roles of Minor Pilin Subunits Spy0125 and Spy0130 in the Serotype M1 Streptococcus pyogenes Strain SF370

Wendy Smith; Jonathan A. Pointon; Emily L. Abbot; Hae Joo Kang; Edward N. Baker; Barry H. Hirst; Janet A. Wilson; Mark J. Banfield; Michael A. Kehoe

Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal approximately 1/3 and C-terminal approximately 2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.


Biopolymers | 2009

Isopeptide bonds in bacterial pili and their characterization by X‐ray crystallography and mass spectrometry

Hae Joo Kang; Martin Middleditch; Thomas Proft; Edward N. Baker

Pili are long, filamentous protein assemblies which extend from the surfaces of many bacteria, and mediate their adhesion to host cells and other matrices. For pathogenic bacteria they are critical to colonization and infection. Whereas the pili of gram‐negative bacteria are formed by noncovalent association of their pilin subunits, those of gram‐positive bacteria are assembled with the aid of sortase enzymes that mediate the formation of covalent isopeptide bonds between successive pilin subunits. Sequence comparisons, mutagenesis and crystallography have implicated specific lysine residues in the formation of these intermolecular bonds and mass spectral analyses of native and modified pili have now provided definitive proof of these linkages. Crystallographic studies of pilin subunits have also led to the unexpected discovery of internal isopeptide crosslinks formed between lysine and asparagine residues. These, too, have been confirmed by mass spectrometry.


Acta Crystallographica Section D-biological Crystallography | 2014

A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly

Hae Joo Kang; Neil G. Paterson; Chae Un Kim; Martin Middleditch; Chungyu Chang; Hung Ton-That; Edward N. Baker

Two crystal structures of the major pilin SpaD from C. diphtheriae have been determined at 1.87 and 2.5 Å resolution. The N-terminal domain is found to contain an isopeptide bond that forms slowly over time in the recombinant protein. Given its structural context, this provides insight into the relationship between internal isopeptide-bond formation and pilus assembly.

Collaboration


Dive into the Hae Joo Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hung Ton-That

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fiona Clow

University of Auckland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge