Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hag Dong Kim is active.

Publication


Featured researches published by Hag Dong Kim.


Biochimica et Biophysica Acta | 2009

PKCδ-dependent functional switch of rpS3 between translation and DNA repair

Tae Sung Kim; Hag Dong Kim; Joon Kim

Ribosomal protein S3 (rpS3) is critically involved in translation as a component of the 40S ribosomal subunit and participates in the processing of DNA damage, functioning as a damage DNA endonuclease. However, it is not yet known how the function of rpS3 switches between translation and DNA repair. Here we show that PKCdelta phosphorylates rpS3 resulting in its mobilization in the nucleus to repair damaged DNA. Phosphorylated rpS3 was only detected in non-ribosomal rpS3 and the repair endonuclease activity of rpS3 was increased by its phosphorylation. In addition, rpS3 knock-down cells showed more sensitivity to genotoxic stress than control cells, and this sensitivity was corrected by overexpressed wild-type rpS3 but not by phosphorylation defective rpS3. In conclusion, we propose that the destiny of rpS3 molecules between translation and DNA repair is regulated by PKCdelta-dependent phosphorylation.


Biochemical and Biophysical Research Communications | 2009

Arginine methylation of ribosomal protein S3 affects ribosome assembly.

Hyun Seock Shin; Chang Young Jang; Hag Dong Kim; Tae Sung Kim; Sangduk Kim; Joon Kim

The human ribosomal protein S3 (rpS3), a component of the 40S small subunit in the ribosome, is a known multi-functional protein with roles in DNA repair and apoptosis. We recently found that the arginine residue(s) of rpS3 are methylated by protein arginine methyltransferase 1 (PRMT1). In this paper, we confirmed the arginine methylation of rpS3 protein both in vitro and in vivo. The sites of arginine methylation are located at amino acids 64, 65 and 67. However, mutant rpS3 (3RA), which cannot be methylated at these sites, cannot be transported into the nucleolus and subsequently incorporated into the ribosome. Our results clearly show that arginine methylation of rpS3 plays a critical role in its import into the nucleolus, as well as in small subunit assembly of the ribosome.


Biochemical and Biophysical Research Communications | 2012

Ribosomal protein S3 localizes on the mitotic spindle and functions as a microtubule associated protein in mitosis

Chang Young Jang; Hag Dong Kim; Xianghua Zhang; Jin Soo Chang; Joon Kim

The human ribosomal protein S3 (rpS3) has multi-functions such as translation, DNA repair and apoptosis. These multiple functions are regulated by post-translational modifications including phosphorylation, methylation and sumoylation. We report here a novel function of rpS3 that is involved in mitosis. When we examined localization of ribosomal proteins in mitosis, we found that rpS3 specifically localizes on the mitotic spindle. Depletion of the rpS3 proteins caused mitotic arrest during the metaphase. Furthermore, the shape of the spindle and chromosome movement in the rpS3 depleted cell was abnormal. Microtubule (MT) polymerization also decreased in rpS3 depleted cells, suggesting that rpS3 is involved in spindle dynamics. Therefore, we concluded that rpS3 acts as a microtubule associated protein (MAP) and regulates spindle dynamics during mitosis.


Molecular and Cellular Biochemistry | 2009

Regulators affecting the metastasis suppressor activity of Nm23-H1

Hag Dong Kim; BuHyun Youn; Tae Sung Kim; Sang Hwa Kim; Hyun Seock Shin; Joon Kim

Nm23-H1 encodes nucleoside diphosphate kinase A (NDPK-A) and is known to have a metastasis suppressive activity in many tumor cells. However, it has many other functions as well. Recent studies have shown that the interacting proteins with Nm23-H1 which mediate the cell proliferation, may act as modulators of the metastasis suppressor activity. The interacting proteins with Nm23-H1 can be classified into 3 groups. The first group of proteins can be classified as upstream kinases of Nm23-H1 such as CKI and Aurora-A/STK15. The second group of proteins acts as downstream effectors for the regulation of specific gene transcriptions, GTP-binding protein functions, and signal transduction in Erk signal cascade. The third group of proteins can be classified as bi-directionally influencing binding partners of Nm23-H1. As a result, the interactions with Nm23-H1 and binding partners have implications in the biochemical characterization involved in metastasis and tumorigenesis.


Biochimica et Biophysica Acta | 2013

Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance.

YongJoong Kim; Hag Dong Kim; Joon Kim

Ribosomal protein S3 (rpS3) is known to play critical roles in ribosome biogenesis and DNA repair. When cellular ROS levels increase, the mitochondrial genes are highly vulnerable to DNA damage. Increased ROS induces rpS3 accumulation in the mitochondria for DNA repair while significantly decreasing the cellular protein synthesis. For the entrance into the mitochondria, the accumulation of rpS3 was regulated by interaction with HSP90, HSP70, and TOM70. Pretreatment with geldanamycin, which binds to the ATP pocket of HSP90, significantly decreased the interaction of rpS3 with HSP90 and stimulated the accumulation of rpS3 in the mitochondria. Furthermore, cellular ROS was decreased and mtDNA damage was rescued when levels of rpS3 were increased in the mitochondria. Therefore, we concluded that when mitochondrial DNA damages accumulate due to increased levels of ROS, rpS3 accumulates in the mitochondria to repair damaged DNA due to the decreased interaction between rpS3 and HSP90 in the cytosol.


Journal of Biological Chemistry | 2009

Phosphorylation Status of Nuclear Ribosomal Protein S3 Is Reciprocally Regulated by Protein Kinase Cδ and Protein Phosphatase 2A

Tae Sung Kim; Hag Dong Kim; Hyun Seock Shin; Joon Kim

It has been shown previously that ribosomal protein S3 (rpS3) has an endonuclease activity, which is increased by protein kinase Cδ (PKCδ)-dependent phosphorylation. However, the reciprocal mechanism for rpS3 dephosphorylation is not known. In this study, we examined phosphatases involved in rpS3 dephosphorylation, and we determined that rpS3 is specifically dephosphorylated by protein phosphatase 2A (PP2A). By immunoprecipitation assay, rpS3 only interacted with PP2Ac but not with protein phosphatase 1. The interaction between rpS3 and PP2Ac occurred only in the nuclear fraction. Moreover, the PP2Ac association with rpS3 was identified in cells transfected with wild-type rpS3 but not with mutant rpS3 lacking PKCδ phosphorylation sites. PP2A inhibition using okadaic acid induced rpS3 phosphorylation. The level of phosphorylated rpS3 in cells was decreased by the overexpression of PP2Ac and was increased by the down-regulation of PP2Ac. Taken together, these results suggest that oxidative stress regulates the phosphorylation status of nonribosomal rpS3 by both activating PKCδ and blocking the PP2A interaction with rpS3.


Journal of Cellular Biochemistry | 2010

RpS3 translation is repressed by interaction with its own mRNA

Hag Dong Kim; Tae Sung Kim; Yoo Jin Joo; Hyun Seock Shin; Sang Hwa Kim; Chang Young Jang; Cheol Eui Lee; Joon Kim

Ribosomal protein S3 (RpS3) is a well‐known multi‐functional protein mainly involved in protein biosynthesis as a member of the small ribosomal subunit. It also plays a role in repairing various DNA damage acting as a repair UV endonuclease. Most of the rpS3 pool is located in the ribosome while the minority exists in free form in the cytoplasm. We here report an additional function of rpS3 in which it represses its own translation by binding to its cognate mRNA. Through RT‐PCR of the RNAs co‐immunoprecipitated with ectopically expressed rpS3, rpS3 protein was found to interact with various RNAs—endogenous rpS3, 18S rRNA. The S3‐C terminal domain was shown to be the major mRNA binding domain of rpS3, independent of the KH domain. This interaction was shown to occur in cytoplasmic fractions rather than ribosomal fractions, and then is involved in its own mRNA translational inhibition by in vitro translation. Furthermore, when Flag‐tagged rpS3 was transiently transfected into 293T cells, the level of endogenous rpS3 gradually decreased regardless of transcription. These results suggest that free rpS3 regulates its own translation via a feedback mechanism. J. Cell. Biochem. 110: 294–303, 2010.


Biochemical and Biophysical Research Communications | 2012

Ribosomal protein S3 interacts with TRADD to induce apoptosis through caspase dependent JNK activation.

Chang Young Jang; Hag Dong Kim; Joon Kim

It has been reported that ribosomal protein S3 (rpS3) functions as a ribosomal protein, a DNA repair endonuclease, a proapoptotic protein, and an essential subunit of the native NF-κB complex. However, it is unknown how rpS3 induces apoptosis in response to extracellular stresses. We report here that rpS3 sensitizes genotoxic stress-induced apoptosis by activating JNK through a caspase dependent manner. This apoptotic effect was shown to result from the physical interaction between rpS3 and TRADD, as assessed by coimmunoprecipitation. Moreover, GFP-rpS3 colocalized with TRADD around the plasma membrane and in the cytoplasm during apoptosis. Thus, rpS3 appears to be recruited to the death-inducing signaling complex (DISC) to induce apoptosis by interacting TRADD in response to extracellular stresses. Based on the findings of this study, we concluded that rpS3 is recruited to the DISC and plays a critical role in both genotoxic stress and cytokine induced apoptosis.


Biochemical and Biophysical Research Communications | 2012

Phenylbutyric acid induces the cellular senescence through an Akt/p21(WAF1) signaling pathway.

Hag Dong Kim; Chang Young Jang; Jeong Min Choe; Jeongwon Sohn; Joon Kim

It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21(WAF1) induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21(WAF1) pathway by PERK inhibition.


Biochemical and Biophysical Research Communications | 2011

Ribosomal protein S3 is stabilized by sumoylation.

Chang Young Jang; Hyun Seock Shin; Hag Dong Kim; Jung Woo Kim; Soo Young Choi; Joon Kim

Human ribosomal protein S3 (rpS3) acts as a DNA repair endonuclease. The multiple functions of this protein are regulated by post-translational modifications including phosphorylation and methylation. Using a yeast-two hybrid screen, we identified small ubiquitin-related modifier-1 (SUMO-1) as a new interacting partner of rpS3. rpS3 interacted with SUMO-1 via the N- and C-terminal regions. We also observed sumoylation of rpS3 in Escherichia coli and mammalian cell systems. Furthermore, we discovered that one of three lysine residues, Lys18, Lys214, or Lys230, was sumoylated in rpS3. Interestingly, sumoylated rpS3 was resistant to proteolytic activity, indicating that SUMO-1 increased the stability of the rpS3 protein. We concluded that rpS3 is covalently modified by SUMO-1 and this post-translational modification regulates rpS3 function by increasing rpS3 protein stability.

Collaboration


Dive into the Hag Dong Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

BuHyun Youn

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Jae Yung Lee

Mokpo National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge