Hai-Bo Huang
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hai-Bo Huang.
Avian Pathology | 2016
Abdur Rahman Ansari; Xiao-Hong Ge; Hai-Bo Huang; Xi-Yao Huang; Xing Zhao; Ke-Mei Peng; Ju-ming Zhong; Huazhen Liu
ABSTRACT Endotoxin or lipopolysaccharide (LPS) exposure can cause injury to the respiratory airways and in response, the respiratory epithelia express toll-like receptors (TLRs) in many species. However, its role in the innate immunity in the avian respiratory system is poorly understood. The aim of the present study was to evaluate the effects of LPS on the chicken trachea and lung. After intraperitoneal LPS or saline injection, the trachea and lungs were harvested at 0, 12, 36 and 72 h (n = 6 at each time point) and histopathologically analysed using haematoxylin and eosin and periodic acid-Schiff staining, while TLR4 expression was determined by immunohistochemistry and secretory Immunoglobulin A (SIgA) levels by enzyme-linked immunosorbent assay. After LPS stimulation, we observed a remarkable decrease in the number of goblet cells along with obvious disruption and desquamation of the ciliated epithelium in the trachea, blurring of the boundary between pulmonary lobules, narrowed or indistinguishable lumen of the pulmonary atria and leukostasis in the lungs. Following LPS stimulation, TLR4 protein expression was up-regulated in both the trachea and the lungs and was found on the ciliated columnar cells as well as in the submucosa of the trachea, and in the lungs on parenchymal and immune cells. However, SIgA levels were only up-regulated in the trachea at 12 h following LPS stimulation. Hence, this report provides novel information about the effects of LPS on the microstructure of the lower respiratory tract and it is concluded that its intra-peritoneal administration leads to TLR4-mediated destruction of the tracheal epithelium and pulmonary inflammation along with increased SIgA expression in the tracheal mucosa.
Veterinary Immunology and Immunopathology | 2015
Abdur Rahman Ansari; Le Wen; Hai-Bo Huang; Ji-Xiang Wang; Xi-Yao Huang; Ke-Mei Peng; Huazhen Liu
Toll-like receptors (TLRs) play crucial roles in innate and adaptive immune responses to invading pathogens. TLR4 is responsible for the recognition of bacterial lipopolysaccharide (LPS) in different parts of central nervous system of many vertebrates. To better understand the functions of TLR4 in cerebellum of chicken, present study was designed to identify the cell types that express TLR4 during postnatal stages as well as the changes in its expression in response to LPS challenge. For this purpose, cerebella were collected from chicken aged 1, 14 and 40 days (n=7 in each group) to analyze TLR4 distribution pattern. The cerebella from 14 chickens injected with LPS or sterilizing saline were also collected at Day 14 (n=7 in each group) to investigate changes in TLR4 expression. This expression was analyzed by immunohistochemistry using an anti-TLR4 antibody. TLR4 was constitutively expressed in the Purkinje cell layer, pia mater, neurons in medulla and blood vessels in the cerebellum and LPS stimulation significantly up-regulated TLR4 expression on Day 14 in the chicken cerebellum. This study provides evidence that neurons in chicken cerebellum can express TLR4 in vivo and suggests that these neurons may play an important role in initiating a defense reaction via activation of TLR4.
Veterinary Immunology and Immunopathology | 2014
Hai-Bo Huang; Quan-Hang Xiang; Hui Wu; Abdur Rahman Ansari; Le Wen; Xiao-Hong Ge; Ji-Xiang Wang; Ke-Mei Peng; Huazhen Liu
Toll-like receptor 4 (TLR4) has been suggested to play a regulatory role in immune cell development; however, studies regarding the role of TLR4 in the development of the chick thymus are scarce. In this study, we investigated the distribution and expression pattern of TLR4 in normal chick thymi at different stages of development, in order to better understand the role of TLR4 in chick thymus development. We studied the thymi from 15 chicks, collected at days 7, 21 and 35 of age. The relative change in TLR4 mRNA expression in the chick thymus at different ages was determined by quantitative real-time PCR, and changes in protein expression were analyzed by immunohistochemistry and Western blotting. Furthermore, the distribution of TLR4 in the chick thymus was analyzed by immunohistochemistry, and compared with the distribution of TLR4 expression in juvenile female pigs (gilts). Our results indicated that TLR4 was constitutively expressed in the chick thymus. TLR4 was primarily expressed in the thymic cortico-medullary junction and the medulla, particularly in the epithelial cells of Hassalls corpuscles. The mRNA and protein expression level of TLR4 increased in the thymus with increasing age (p<0.05). Taken together, these results indicate that TLR4 is constitutively expressed by epithelial cells in the chick thymus, suggesting it may participate in thymic development by inducing factors affecting its development.
Gene | 2014
Shun Lu; Ke-Mei Peng; Qishuang Gao; Min Xiang; Huazhen Liu; Hui Song; Keli Yang; Hai-Bo Huang; Ke Xiao
Avian β-defensins (AvBDs) are a family of small antimicrobial peptides that play important roles in the innate immunity of birds. Herein, we report on two new ostrich AvBD genes, AvBD2 and AvBD7, which were isolated from the bone marrow of ostriches (Struthio camelus). The coding regions of ostrich AvBD2 and AvBD7 comprised 195 bp and 201bp, which encoded 64 and 66 amino acids, respectively. Homology analysis showed that ostrich AvBD2 had the highest similarity (up to 86%) with the swan goose (Anser cygnoides) AvBD2, while ostrich AvBD7 shared the highest similarity (up to 81%) with chicken AvBD7. Analysis of the codon-usage bias showed that the two ostrich AvBDs had different codon-usage patterns from other AvBDs. The two synthetic AvBD peptides exhibited antibacterial activities against both Gram-positive and Gram-negative bacteria, and these activities decreased significantly in the presence of 100mM NaCl (P<0.01). Real-time reverse transcription-polymerase chain reaction analysis showed that AvBD2 and AvBD7 were widely expressed at different levels in 17 different tissues. This is the first report of the nucleotide sequences of ostrich AvBDs. Further investigations of these two AvBDs may help us to gain new insights into the immune defense system of the ostrich and to make subsequent therapeutic use of ostrich defensins.
PLOS ONE | 2015
Hai-Bo Huang; Ke Xiao; Shun Lu; Keli Yang; Abdur Rahman Ansari; Haseeb Khaliq; Hui Song; Juming Zhong; Huazhen Liu; Ke-Mei Peng
Previous studies revealed that thymus is a targeted immune organ in malnutrition, and high-boron stress is harmful for immune organs. African ostrich is the living fossil of ancient birds and the food animals in modern life. There is no report about the effect of boron intake on thymus of ostrich. The purpose of present study was to evaluate the effect of excessive boron stress on ostrich thymus and the potential role of TLR3/4 signals in this process. Histological analysis demonstrated that long-term boron stress (640 mg/L for 90 days) did not disrupt ostrich thymic structure during postnatal development. However, the numbers of apoptotic cells showed an increased tendency, and the expression of autophagy and proliferation markers increased significantly in ostrich thymus after boron treatment. Next, we examined the expression of TLR3 and TLR4 with their downstream molecular in thymus under boron stress. Since ostrich genome was not available when we started the research, we first cloned ostrich TLR3 TLR4 cDNA from thymus. Ostrich TLR4 was close to white-throated Tinamou. Whole avian TLR4 codons were under purify selection during evolution, whereas 80 codons were under positive selection. TLR3 and TLR4 were expressed in ostrich thymus and bursa of fabricius as was revealed by quantitative real-time PCR (qRT-PCR). TLR4 expression increased with age but significantly decreased after boron treatment, whereas TLR3 expression showed the similar tendency. Their downstream molecular factors (IRF1, JNK, ERK, p38, IL-6 and IFN) did not change significantly in thymus, except that p100 was significantly increased under boron stress when analyzed by qRT-PCR or western blot. Taken together, these results suggest that ostrich thymus developed resistance against long-term excessive boron stress, possibly by accelerating intrathymic cell death and proliferation, which may bypass the TLR3/4 pathway. In addition, attenuated TLRs activity may explain the reduced inflammatory response to pathogens under boron stress.
International Immunopharmacology | 2015
Keli Yang; Ke Xiao; Hai-Bo Huang; Shun Lu; Juming Zhong; Abdur Rahman Ansari; Haseeb Khaliq; Hui Song; Huazhen Liu; Ke-Mei Peng
B cell activating factor (BAFF), which belongs to the tumor necrosis factor (TNF) family, is testified to play a critical role in B cell survival, proliferation, maturation and immunoglobulin secretion. In the present study, the cDNA of open reading frame (ORF) in African ostrich (Struthio camelus) BAFF (designated OsBAFF) was cloned by reverse transcription-PCR (RT-PCR). The OsBAFF gene encodes a 288-amino acid protein containing a predicted transmembrane domain and a putative furin protease cleavage site like BAFFs from chicken (cBAFF), quail (qBAFF), duck (dBAFF), goose (gBAFF) and dove (doBAFF). RT-PCR analysis showed that the OsBAFF gene is strongly expressed in the bursa of Fabricius, thymus, spleen, and bone marrow. The soluble OsBAFF had been cloned into pET28a. SDS-PAGE and Western blotting analysis confirmed that the soluble fusion protein His-OsBAFF was efficiently expressed in Escherichia coli Rosset (DE3). In vitro, purified OsBAFF was not only able to promote the survival of African ostrich bursal lymphocytes, but also able to co-stimulate proliferation of mouse splenic B cells. The expression of OsBAFF in lymphocyte cells was higher than the control after LPS stimulation. These findings indicated that OsBAFF plays an important role in survival and proliferation of African ostrich bursal lymphocytes, which may provide valuable information for research into the immune system of African ostrich and OsBAFF may serve as a potential immunologic factor for enhancing immunological efficacy in African ostrich and any other birds.
Veterinary Immunology and Immunopathology | 2013
Hai-Bo Huang; Yin-Xue Liu; Yong Hou; Le Wen; Xiao-Hong Ge; Ke-Mei Peng; Huazhen Liu
Eosinophils are a type of thymic stromal cell that are present in the thymus of both humans and mice. They participate in regulating T-cell development under non-pathological conditions. However, studies are scarce regarding the role of eosinophils in the development of the thymus in chickens. Therefore, this study investigated the distribution of eosinophils in normal chicken thymi at different stages of development. Seven thymi were obtained from chickens at days 1, 21 and 35 of development. The distribution of eosinophils in the thymi was analyzed by histological and immunohistochemical techniques using Lendrums chromotrope 2R method and an antibody against eosinophilic cationic protein (ECP), respectively. Eosinophils were constitutively located in the chick thymus. They were mainly distributed in the thymic corticomedullary junction and medulla, especially around vessels and Hassalls corpuscles, and only a few were in the trabeculae among thymic lobules and around vessels. There were none in the cortex. The number of thymic eosinophils decreased with increasing age (P<0.01). These results indicated that eosinophils comprise a type of thymic stromal cells in the chick, which may regulate thymic development, especially during the early stages of development.
Oncotarget | 2017
Abdur Rahman Ansari; Ningya Li; Zhijian Sun; Hai-Bo Huang; Xing Zhao; Lei Cui; Yafang Hu; Juming Zhong; Niel A. Karrow; Huazhen Liu
We investigated the mechanisms that induce atrophy of the chicken bursa of Fabricius (BF) upon lipopolysaccharide (LPS) treatment in young chicks. LPS treatment resulted in ∼36% decrease in bursal weight within 36 h (P < 0.01). Histological analysis showed infiltration of eosinophilic heterophils and nucleated oval shaped RBCs in or near blood vessels of the BF from LPS-treated chicks. Scanning electron micrographs showed severe erosion and breaks in the mucosal membrane at 12 h and complete exuviation of bursal mucosal epithelial cells at 36 h. We observed decreased cell proliferation (low PCNA positivity) and increased apoptosis (high TUNEL and ssDNA positivity) in the BF 12-72 h after LPS treatment. RNA-seq analysis of the BF transcriptome showed 736 differentially expressed genes with most expression changes (637/736) 12 h after LPS treatment. KEGG pathway analysis identified TLR4-MAPK-NF-κB/AP-1 as the key signaling pathway affected in response to LPS stimulation. These findings indicate LPS activates the TLR4-MAPK-NF-κB/AP-1 signaling pathway that mediates acute atrophy of the chicken bursa of Fabricius by inducing inflammation and apoptosis.
Microbial Pathogenesis | 2018
Abdur Rahman Ansari; Muhammad Arshad; Saima Masood; Hai-Bo Huang; Xing Zhao; Ningya Li; Zhijian Sun; Lei Cui; Yafang Hu; Huazhen Liu
Toll like receptor 4 (TLR4), eosinophils and mast cells play significant role in host immunity during several pathogenic infections. However in vivo tissue expression of TLR4 and distribution pattern of eosinophils and mast cells in chicken bursa of Fabricius (BF) during Salmonella enterica serovar Typhimurium (STm) infection is poorly studied. Therefore, herein, following immunostaining, we found localization of TLR4 in follicular cortex and medulla and its expression was statistical increased after 36 h and 72 h of STm stimulation. Chromotrope 2R staining revealed that eosinophils were mostly distributed in follicular cortex, inter-follicular spaces and in or around blood vessels and their number in BF were statistical increased after 72 h of STm stimulation. The presence of eosinophils was confirmed using immunostaining with anti-rabbit eosinophil cationic protein antibody. Toluidine blue stained mast cells were mostly distributed in connective tissues between inter-follicular spaces while some were also present in follicular cortex of BF. However, STm stimulation illustrated non-significant effect on the number of mast cells or their de-granulation, instead their number were gradually decreased in BF with advancement in age of chickens. Hence, this study provided novel information about in vivo tissue distribution of TLR4, eosinophils and mast cells in BF during STm infection.
Frontiers in Immunology | 2016
Congcong Li; Huabin He; An Liu; Huazhen Liu; Hai-Bo Huang; Changzhi Zhao; Lu Jing; Juan Ni; Lilin Yin; Suqin Hu; Hui Wu; Xinyun Li; Shuhong Zhao
miR-155 has been confirmed to be a key factor in immune responses in humans and other mammals. Therefore, investigation of variations in miR-155 could be useful for understanding the differences in immunity between individuals. In this study, four SNPs in miR-155 were identified in mice (Mus musculus) and humans (Homo sapiens). In mice, the four SNPs were closely linked and formed two miR-155 haplotypes (A and B). Ten distinct types of blood parameters were associated with miR-155 expression under normal conditions. Additionally, 4 and 14 blood parameters were significantly different between these two genotypes under normal and lipopolysaccharide (LPS) stimulation conditions, respectively. Moreover, the expression levels of miR-155, the inflammatory response to LPS stimulation, and the lethal ratio following Salmonella typhimurium infection were significantly increased in mice harboring the AA genotype. Further, two SNPs, one in the loop region and the other near the 3′ terminal of pre-miR-155, were confirmed to be responsible for the differential expression of miR-155 in mice. Interestingly, two additional SNPs, one in the loop region and the other in the middle of miR-155*, modulated the function of miR-155 in humans. Predictions of secondary RNA structure using RNAfold showed that these SNPs affected the structure of miR-155 in both mice and humans. Our results provide novel evidence of the natural functional SNPs of miR-155 in both mice and humans, which may affect the expression levels of mature miR-155 by modulating its secondary structure. The SNPs of human miR-155 may be considered as causal mutations for some immune-related diseases in the clinic. The two genotypes of mice could be used as natural models for studying the mechanisms of immune diseases caused by abnormal expression of miR-155 in humans.