Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hai-Yan Qi is active.

Publication


Featured researches published by Hai-Yan Qi.


Journal of Biological Chemistry | 2005

Toll-like receptor 4 signaling regulates cytosolic phospholipase A2 activation and lipid generation in lipopolysaccharide-stimulated macrophages.

Hai-Yan Qi; James H. Shelhamer

Inflammatory lipid mediators such as prostaglandins and leukotrienes play crucial roles in the pathogenesis of bacterial lipopolysaccharide (LPS)-induced inflammation. Cytosolic phospholipase A2 (cPLA2) is a key enzyme in the generation of pro-inflammatory lipid mediators. Here, we found that Toll-like receptor 4 (TLR4) is essential for LPS-induced cPLA2 activation and lipid release. Inhibition of TLR4 protein expression by TLR4 small interfering RNA or neutralization of TLR4 by the specific antibody against TLR4/MD2 blocked cPLA2 phosphorylation and cPLA2-hydrolyzed arachidonic acid release. Furthermore, activation of the TLR4 signaling pathway by LPS regulated cPLA2 activation and lipid release. cPLA2 phosphorylation and cPLA2-hydrolyzed lipid release were significantly impaired when TLR4 adaptor protein, either MyD88 or TRIF, was knocked down in LPS-stimulated macrophages. Similarly, LPS-induced arachidonate release was inhibited in cells transfected with a dominant-negative MyD88 or TRIF construct. Subsequently, cPLA2 activation could be suppressed by inhibition of the TLR4 adaptor protein-directed p38 and ERK MAPK pathways. These findings suggest that, in LPS-induced inflammation, the TLR4-mediated MyD88- and TRIF-dependent MAPK pathways result in cPLA2 activation and production of pro-inflammatory lipid mediators.


Journal of Biological Chemistry | 1999

SecA Is Required for the Insertion of Inner Membrane Proteins Targeted by the Escherichia coli Signal Recognition Particle

Hai-Yan Qi; Harris D. Bernstein

Recent work has demonstrated that the signal recognition particle (SRP) is required for the efficient insertion of many proteins into the Escherichia coli inner membrane (IM). Based on an analogy to eukaryotic SRP, it is likely that bacterial SRP binds to inner membrane proteins (IMPs) co-translationally and then targets them to protein transport channels (“translocons”). Here we present evidence that SecA, which has previously been shown to facilitate the export of proteins targeted in a post-translational fashion, is also required for the membrane insertion of proteins targeted by SRP. The introduction of SecA mutations into strains that have modest SRP deficiencies produced a synthetic lethal effect, suggesting that SecA and SRP might function in the same biochemical pathway. Consistent with this explanation, depletion of SecA by inactivating a temperature-sensitive amber suppressor in a secA am strain completely blocked the membrane insertion of AcrB, a protein that is targeted by SRP. In the absence of substantial SecA, pulse-labeled AcrB was retained in the cytoplasm even after a prolonged chase period and was eventually degraded. Although protein export was also severely impaired by SecA depletion, the observation that more than 20% of the OmpA molecules were translocated properly showed that translocons were still active. Taken together, these results imply that SecA plays a much broader role in the transport of proteins across the E. coli IM than has been previously recognized.


Journal of Immunology | 2015

Prostaglandin E2 Inhibits NLRP3 Inflammasome Activation through EP4 Receptor and Intracellular Cyclic AMP in Human Macrophages

Milena Sokolowska; Li-Yuan Chen; Yueqin Liu; Asuncion Martinez-Anton; Hai-Yan Qi; Carolea Logun; Sara Alsaaty; Yong Hwan Park; Daniel L. Kastner; Jae Jin Chae; James H. Shelhamer

PGE2 is a potent lipid mediator involved in maintaining homeostasis but also promotion of acute inflammation or immune suppression in chronic inflammation and cancer. Nucleotide-binding domain, leucine-rich repeat–containing protein (NLR)P3 inflammasome plays an important role in host defense. Uncontrolled activation of the NLRP3 inflammasome, owing to mutations in the NLRP3 gene, causes cryopyrin-associated periodic syndromes. In this study, we showed that NLRP3 inflammasome activation is inhibited by PGE2 in human primary monocyte-derived macrophages. This effect was mediated through PGE2 receptor subtype 4 (EP4) and an increase in intracellular cAMP, independently of protein kinase A or exchange protein directly activated by cAMP. A specific agonist of EP4 mimicked, whereas its antagonist or EP4 knockdown reversed, PGE2-mediated NLRP3 inhibition. PGE2 caused an increase in intracellular cAMP. Blockade of adenylate cyclase by its inhibitor reversed PGE2-mediated NLRP3 inhibition. Increase of intracellular cAMP by an activator of adenylate cyclase or an analog of cAMP, or a blockade of cAMP degradation by phosphodiesterase inhibitor decreased NLRP3 activation. Protein kinase A or exchange protein directly activated by cAMP agonists did not mimic, and their antagonists did not reverse, PGE2-mediated NLRP3 inhibition. Additionally, constitutive IL-1β secretion from LPS-primed PBMCs of cryopyrin-associated periodic fever syndromes patients was substantially reduced by high doses of PGE2. Moreover, blocking cytosolic phospholipase A2α by its inhibitor or small interfering RNA or inhibiting cyclooxygenase 2, resulting in inhibition of endogenous PGE2 production, caused an increase in NLRP3 inflammasome activation. Our results suggest that PGE2 might play a role in maintaining homeostasis during the resolution phase of inflammation and might serve as an autocrine and paracrine regulator.


Immunology | 2014

The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A2 via GPR120 receptor to produce prostaglandin E2 and plays an anti‐inflammatory role in macrophages

Yueqin Liu; Li-Yuan Chen; Milena Sokolowska; Michael Eberlein; Sara Alsaaty; Asuncion Martinez-Anton; Carolea Logun; Hai-Yan Qi; James H. Shelhamer

Docosahexaenoic acid (DHA) is one of the major ingredients of fish oil and has been reported to have anti‐inflammatory properties mediated through the GPR120 receptor. Whether cytosolic phospholipase A2 (cPLA2) and lipid mediators produced from cPLA2 activation are involved in the anti‐inflammatory role of DHA in macrophages has not been reported. We report here that DHA and the GPR120 agonist, GW9508, activate cPLA2 and cyclooxygenase 2 (COX‐2), and cause prostaglandin E2 (PGE2) release in a murine macrophage cell line RAW264.7 and in human primary monocyte‐derived macrophages. DHA and GW9508 activate cPLA2 via GPR120 receptor, G protein Gαq and scaffold protein β‐arrestin 2. Extracellular signal‐regulated kinase 1/2 activation is involved in DHA‐ and GW9508‐induced cPLA2 activation, but not p38 mitogen‐activated protein kinase. The anti‐inflammatory role of DHA and GW9508 is in part via activation of cPLA2, COX‐2 and production of PGE2 as a cPLA2 inhibitor or a COX‐2 inhibitor partially reverses the DHA‐ and GW9508‐induced inhibition of lipopolysaccharide‐induced interleukin‐6 secretion. The cPLA2 product arachidonic acid and PGE2 also play an anti‐inflammatory role. This effect of PGE2 is partially through inhibition of the nuclear factor‐κB signalling pathway and through the EP4 receptor of PGE2 because an EP4 inhibitor or knock‐down of EP4 partially reverses DHA inhibition of lipopolysaccharide‐induced interleukin‐6 secretion. Hence, DHA has an anti‐inflammatory effect partially through induction of PGE2.


Journal of Immunology | 2014

SARS-Coronavirus Open Reading Frame-9b Suppresses Innate Immunity by Targeting Mitochondria and the MAVS/TRAF3/TRAF6 Signalosome

Chong-Shan Shi; Hai-Yan Qi; Cedric Boularan; Ning-Na Huang; Mones Abu-Asab; James H. Shelhamer; John H. Kehrl

Coronaviruses (CoV) have recently emerged as potentially serious pathogens that can cause significant human morbidity and death. The severe acute respiratory syndrome (SARS)-CoV was identified as the etiologic agent of the 2002–2003 international SARS outbreak. Yet, how SARS evades innate immune responses to cause human disease remains poorly understood. In this study, we show that a protein encoded by SARS-CoV designated as open reading frame-9b (ORF-9b) localizes to mitochondria and causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1, a host protein involved in mitochondrial fission. Also, acting on mitochondria, ORF-9b targets the mitochondrial-associated adaptor molecule MAVS signalosome by usurping PCBP2 and the HECT domain E3 ligase AIP4 to trigger the degradation of MAVS, TRAF3, and TRAF 6. This severely limits host cell IFN responses. Reducing either PCBP2 or AIP4 expression substantially reversed the ORF-9b–mediated reduction of MAVS and the suppression of antiviral transcriptional responses. Finally, transient ORF-9b expression led to a strong induction of autophagy in cells. The induction of autophagy depended upon ATG5, a critical autophagy regulator, but the inhibition of MAVS signaling did not. These results indicate that SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function to help evade host innate immunity. This study has uncovered an important clue to the pathogenesis of SARS-CoV infection and illustrates the havoc that a small ORF can cause in cells.


The EMBO Journal | 2001

Evidence for a novel GTPase priming step in the SRP protein targeting pathway.

Yun Lu; Hai-Yan Qi; Janine B. Hyndman; Nancy Ulbrandt; Alexey Teplyakov; Nenad Tomasevic; Harris D. Bernstein

Protein targeting by the signal recognition particle (SRP) pathway requires the interaction of two homologous GTPases that reciprocally regulate each others GTPase activity, the SRP signal peptide‐ binding subunit (SRP54) and the SRP receptor α‐subunit (SRα). The GTPase domain of both proteins abuts a unique ‘N domain’ that appears to facilitate external ligand binding. To examine the relationship between the unusual regulation and unique architecture of the SRP pathway GTPases, we mutated an invariant glycine in Escherichia coli SRP54 and SRα orthologs (’Ffh‘ and ‘FtsY’, respectively) that resides at the N–GTPase domain interface. A G257A mutation in Ffh produced a lethal phenotype. The mutation did not significantly affect Ffh function, but severely reduced interaction with FtsY. Likewise, mutation of FtsY Gly455 produced growth defects and inhibited interaction with Ffh. The data suggest that Ffh and FtsY interact only in a ‘primed’ conformation which requires interdomain communication. Based on these results, we propose that the distinctive features of the SRP pathway GTPases evolved to ensure that SRP and the SR engage external ligands before interacting with each other.


Journal of Immunology | 2011

A Cytosolic Phospholipase A2-Initiated Lipid Mediator Pathway Induces Autophagy in Macrophages

Hai-Yan Qi; Mathew P. Daniels; Yueqin Liu; Li-Yuan Chen; Sara Alsaaty; Stewart J. Levine; James H. Shelhamer

Autophagy delivers cytoplasmic constituents to autophagosomes and is involved in innate and adaptive immunity. Cytosolic phospholipase (cPLA2)-initiated proinflammatory lipid mediator pathways play a critical role in host defense and inflammation. The crosstalk between the two pathways remains unclear. In this study, we report that cPLA2 and its metabolite lipid mediators induced autophagy in the RAW246.7 macrophage cell line and in primary monocytes. IFN-γ–triggered autophagy involves activation of cPLA2. Cysteinyl leukotrienes D4 and E4 and PGD2 also induced these effects. The autophagy is independent of changes in mTOR or autophagic flux. cPLA2 and lipid mediator-induced autophagy is ATG5 dependent. These data suggest that lipid mediators play a role in the regulation of autophagy, demonstrating a connection between the two seemingly separate innate immune responses, induction of autophagy and lipid mediator generation.


Journal of Biological Chemistry | 2001

FtsY Binds to the Escherichia coli Inner Membrane via Interactions with Phosphatidylethanolamine and Membrane Proteins

Jonathan S. Millman; Hai-Yan Qi; Felicia Vulcu; Harris D. Bernstein; David W. Andrews


Journal of Biological Chemistry | 2002

DnaK Promotes the Selective Export of Outer Membrane Protein Precursors in SecA-deficient Escherichia coli

Hai-Yan Qi; Janine B. Hyndman; Harris D. Bernstein


Archive | 2015

Receptor and Intracellular Cyclic AMP in Inflammasome Activation through EP4 Inhibits NLRP3 2 Prostaglandin E

H. Shelhamer; Yong Hwan Park; Daniel L. Kastner; Jae Jin Chae; Hai-Yan Qi; Carolea Logun; Sara Alsaaty; Milena Sokolowska; Li-Yuan Chen; Yueqin Liu

Collaboration


Dive into the Hai-Yan Qi's collaboration.

Top Co-Authors

Avatar

James H. Shelhamer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Li-Yuan Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sara Alsaaty

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yueqin Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carolea Logun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Harris D. Bernstein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Milena Sokolowska

Swiss Institute of Allergy and Asthma Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae Jin Chae

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yong Hwan Park

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge