Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hai-Yan Xie is active.

Publication


Featured researches published by Hai-Yan Xie.


Biosensors and Bioelectronics | 2009

Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates.

Min Xie; Jun Hu; Yan-Min Long; Zhi-Ling Zhang; Hai-Yan Xie; Dai-Wen Pang

Nanomaterial-based nanobiosensors (nanobiodevices or nanobioprobes) are increasingly emphasized. Here, quantum dots and gamma-Fe(2)O(3) magnetic nanoparticles were co-embedded into single swelling poly(styrene/acrylamide) copolymer nanospheres to fabricate fluorescent-magnetic bifunctional nanospheres. Subsequently, fluorescent-magnetic-biotargeting trifunctional nanobiosensors (TFNS) modified with wheat germ agglutinin (WGA), peanut agglutinin (PNA) or Dolichos biflorus agglutinin (DBA) were conveniently produced so as to bind with A549 cells which are surface-expressed with N-acetylglucosamine, d-galactosamine and N-acetylgalactosamine residues. The values of WGA, PNA and DBA on each nanobiosensor were calculated to be 40, 14 and 60, respectively. These three kinds of lectin-modified trifunctional nanobiosensors (lectin-TFNS) can be used for qualitative and quantitative analysis of the glycoconjugates on A549 cell surface. The fluorescence intensity of WGA-modified nanobiosensors related to N-acetylglucosamine on A549 cell surface was much higher than that of PNA-modified nanobiosensors corresponding to d-galactosamine and that of N-acetylgalactosamine-related DBA-modified nanobiosensors, which is consistent with the results detected by flow cytometry. Lectin-modified trifunctional nanobiosensors not only can quantify the different glycoconjugates on A549 cell surface, but also can recognize and isolate A549 cells. 0.5mg of WGA-modified fluorescent-magnetic trifunctional nanobiosensors could capture 7.0 x 10(4) A549 cells. Therefore, the lectin-modified trifunctional nanobiosensors may be applied in mapping the glycoconjugates on cell surfaces and for recognition and isolation of targeted cells.


Biomaterials | 2011

A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes

Jun Hu; Min Xie; Cong-Ying Wen; Zhi-Ling Zhang; Hai-Yan Xie; An-An Liu; Yong-Yong Chen; Shi-Ming Zhou; Dai-Wen Pang

Accurate and rapid recognition and separation of multiple types of biological targets such as molecules, cells, bacteria or viruses from complex sample mixtures is of great importance for a wide range of diagnostic and therapeutic strategies. To achieve this goal, a set of fluorescent, magnetic, dual-encoded multifunctional bioprobes has been constructed by co-embedding different-sized quantum dots and varying amounts of γ-Fe(2)O(3) magnetic nanoparticles into swollen poly(styrene/acrylamide) copolymer nanospheres. The dual-encoded bioprobes, which possessed different photoluminescent property and magnetic susceptibility, were proven to be capable of simultaneously recognizing and separating multiple components from a complex sample when three kinds of lectins were used as the targets. The lectins were separated with high efficiency and kept their bioactivity during the process. Compared to the conventional batchwise separation, this method does not require a large number of sequential reaction steps, which is economical of time and can be very reagent-saving. By combining the multiplexing capability of quantum dots with the superparamagnetic properties of iron oxide nanoparticles, this dual-encoded technique is expected to open new opportunities in high-throughput and multiplex bioassays, such as cell sorting, proteomical and genomical applications, drug screening etc.


Chemical Communications | 2005

Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications

Guo-Ping Wang; Er-Qun Song; Hai-Yan Xie; Zhi-Ling Zhang; Zhi-Quan Tian; Chao Zuo; Dai-Wen Pang; Daocheng Wu; Yun-Bo Shi

Hydrazide-containing bifunctional nanospheres were covalently coupled on the surface with IgG, avidin, and biotin, to generate novel fluorescent-magnetic-biotargeting trifunctional nanospheres, which can be used in a number of biomedical applications, including visual sorting and manipulation of apoptotic cells as demonstrated here.


Analytical Chemistry | 2012

A Mild and Reliable Method to Label Enveloped Virus with Quantum Dots by Copper-Free Click Chemistry

Jian Hao; Li-Li Huang; Rui Zhang; Hanzhong Wang; Hai-Yan Xie

Real-time tracking of the dynamic process of virus invasion is crucial to understanding the infection mechanism. For successful tracking, efficient labeling methods are indispensable. In this paper, we report a mild and reliable method for labeling viruses, especially with regard to easily disabled enveloped viruses. The copper-free click chemistry has been used to label enveloped viruses with quantum dots (QDs) by linking virions modified with azide to the QDs derived with dibenzocyclooctynes (DBCO). Both vaccinia virus (VACV) and avian influenza A virus (H9N2) can be specifically and rapidly labeled under mild conditions, with a labeling efficiency of more than 80%. The labeled virions were of intact infectivity, and their fluorescence was strong enough to realize single-virion tracking. Compared to previously reported methods, our method is less destructive, reliable, and universal, without specific requirements for the type and structure of viruses to be labeled, which has laid the foundation for long-term dynamic visualization of virus infection process.


Nanotechnology | 2012

Fluorescent-magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis

Min Xie; Jun Hu; Cong-Ying Wen; Zhi-Ling Zhang; Hai-Yan Xie; Dai-Wen Pang

Bead-based optical encoding or magnetic encoding techniques are promising in high-throughput multiplexed detection and separation of numerous species under complicated conditions. Therefore, a self-assembly strategy implemented in an organic solvent is put forward to fabricate fluorescent-magnetic dual-encoded nanospheres. Briefly, hydrophobic trioctylphosphine oxide-capped CdSe/ZnS quantum dots (QDs) and oleic acid-capped nano-γ-Fe2O3 magnetic particles are directly, selectively and controllably assembled on branched poly(ethylene imine)-coated nanospheres without any pretreatment, which is crucial to keep the high quantum yield of QDs and good dispersibility of γ-Fe2O3. Owing to the tunability of coating amounts of QDs and γ-Fe2O3 as well as controllable fluorescent emissions of deposited-QDs, dual-encoded nanospheres with different photoluminescent emissions and gradient magnetic susceptibility are constructed. Using this improved layer-by-layer self-assembly approach, deposition of hydrophobic nanoparticles onto hydrophilic carriers in organic media can be easily realized; meanwhile, fluorescent-magnetic dual-functional nanospheres can be further equipped with readable optical and magnetic addresses. The resultant fluorescent-magnetic dual-encoded nanospheres possess both the unique optical properties of QDs and the superparamagnetic properties of γ-Fe2O3, exhibiting good monodispersibility, huge encoding capacity and nanoscale particle size. Compared with the encoded microbeads reported by others, the nanometre scale of the dual-encoded nanospheres gives them minimum steric hindrance and higher flexibility.


Neuroscience Letters | 2008

The formation of catechol isoquinolines in PC12 cells exposed to manganese

Yulin Deng; Yujing Luan; Hong Qing; Hai-Yan Xie; Jianqing Lu; Jian Zhou

Chronic exposure to manganese causes parkinsonian symptoms and has been implicated as an environmental factor in the pathogenesis of Parkinsons disease (PD). Here we show that manganese inhibits the proliferation of PC12 cells and induces apoptosis through the formation of catechol isoquinolines. Manganese induces the production of 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol, Sal) and N-methyl-salsolinol (NMSal) in PC12 cells, and increases the levels of malondialdehyde (MDA) in a dose-dependent manner. The data indicates that the formation of catechol isoquinolines due to oxidative stress induced by MnCl(2) may be a mechanism by which manganese causes degeneration of dopaminergic neurons.


Biophysical Journal | 2014

Recognition Kinetics of Biomolecules at the Surface of Different-Sized Spheres

Jun Hu; Cong-Ying Wen; Zhi-Ling Zhang; Min Xie; Hai-Yan Xie; Dai-Wen Pang

Bead-based assay is widely used in many bioanalytical applications involving the attachment of proteins and other biomolecules to the surface. For further understanding of the formation of a sphere-biomolecule complex and easily optimizing the use of spheres in targeted biological applications, it is necessary to know the kinetics of the binding reaction at sphere/solution interface. In our presented work, a simple fluorescence analysis method was employed to measure the kinetics for the binding of biotin to sphere surface-bound FITC-SA, based on the fact that the fluorescence intensity of FITC was proportionally enhanced by increasing the binding amount of biotin. By monitoring the time-dependent changes of FITC fluorescence, it was found that the binding rate constant of biotin to sphere surface-immobilized FITC-SA was much smaller than that of biotin to freely diffusing FITC-SA. This can be attributed to the decreased encounter frequency of the reaction pair, restricted motion of the attached biomolecule, and the weakened steric accessibility of the binding site. These factors would become more obvious when increasing the size of the sphere upon which the FITC-SA was immobilized. Additionally, the effect of nanoparticles on the diffusion-controlled bimolecular binding reaction was more evident than that on the chemical recognition-controlled binding reaction.


Nanotechnology | 2013

A simple method of labeling amyloid β with quantum dots and ingestion of the labeled amyloid β by astrocytes

Jing Zhang; Xing Jia; Hong Qing; Hai-Yan Xie

Steady labeling of amyloid beta (Aβ) is crucial for studying the ingestion and degradation of Aβ by astrocytes and unraveling a relevant regulation mechanism. Quantum dots (QDs) are an optimum labeling reagent for this because of their strong and steady fluorescence properties. In this paper, Aβ was labeled with QDs by a simple mixed incubation strategy, with a QD labeled Aβ complex (QDs-Aβ) being obtained. In the complex, QDs efficiently restrained the formation of β-folding and fibrils of Aβ, while the graininess, dispersivity and fluorescence properties of the QDs hardly changed. The fluorescence microscopy imaging results showed that the astrocytes could ingest the QDs-Aβ. The QDs and Aβ did not separate from each other during the ingestion process, and the Aβ could be degraded subsequently.


Analytical Chemistry | 2017

Integrating Two Efficient and Specific Bioorthogonal Ligation Reactions with Natural Metabolic Incorporation in One Cell for Virus Dual Labeling

Li-Li Huang; Kejiang Liu; Qianmei Zhang; Jin Xu; Dongxu Zhao; Houshun Zhu; Hai-Yan Xie

Though techniques in bioorthogonal chemistry and metabolic incorporation have been developed over the past decade, it remains difficult to integrate different bioorthogonal reactions or metabolic incorporations into one system. In this report, the protein and DNA metabolic incorporations were combined with two bioorthogonal reactions in one cell to develop a facile and universal method for virus dual labeling. Azide and vinyl groups were introduced into the proteins or genomes of viruses, respectively, through the intrinsic biosynthesis of biomolecules, which were subsequently fluorescently labeled via copper-free click chemistry or alkene-tetrazine ligation reactions during natural propagation process in host cells. Both the envelope viruses and the capsid viruses could be labeled, and the dual labeling efficiency was more than 80%. The labeled progeny virions were structurally intact and fully infectious, and their fluorescence was strong enough to track single virions.


Analytical Chemistry | 2018

Labeling and Single Particle Tracking Based Entry Mechanism Study of Vaccinia Virus from the Tiantan Strain

Li-Li Huang; Li−Li Wu; Xue Li; Kejiang Liu; Dongxu Zhao; Hai-Yan Xie

Entry is the first and critical step of viral infection, while the entry mechanisms of many viruses are still unclear due to the lack of efficient technology. In this report, by taking advantage of the single-virion fluorescence tracking technique and simultaneous dual-labeling methods for viruses we developed, the entry pathway of vaccinia virus from tiantan strain (VACV-TT) was studied in real-time. By combining with the technologies of virology and cell biology, we found that VACV-TT moved toward the Vero cell body along the filopodia induced by the virions interaction, and then, they were internalized through macropinocytosis, which was an actin-, ATP-dependent but clathrin-, caveolin-independent endocytosis. These results are of significant importance for VACV-TT-based vaccine vectors and oncolytic virus study.

Collaboration


Dive into the Hai-Yan Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li-Li Huang

Beijing Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongxu Zhao

Beijing Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Qing

Beijing Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge