Hai-Ying Ma
University of North Texas Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hai-Ying Ma.
Experimental Eye Research | 2013
Brett H. Mueller; Yong Park; Donald Raymond Daudt; Hai-Ying Ma; Irina Akopova; Dorota Stankowska; Abbot F. Clark; Thomas Yorio
Sigma-1 receptors (σ-1rs) exert neuroprotective effects on retinal ganglion cells (RGCs) both in vivo and in vitro. This receptor has unique properties through its actions on several voltage-gated and ligand-gated channels. The purpose of this study was to investigate the role that σ-1rs play in regulating cell calcium dynamics through activated L-type Voltage Gated Calcium Channels (L-type VGCCs) in purified RGCs. RGCs were isolated from P3-P7 Sprague-Dawley rats and purified by sequential immunopanning using a Thy1.1 antibody. Calcium imaging was used to measure changes in intracellular calcium after depolarizing the cells with potassium chloride (KCl) in the presence or absence of two σ-1r agonists [(+)-SKF10047 and (+)-Pentazocine], one σ-1r antagonist (BD1047), and one L-type VGCC antagonist (Verapamil). Finally, co-localization studies were completed to assess the proximity of σ-1r with L-type VGCCs in purified RGCs. VGCCs were activated using KCl (20 mM). Pre-treatment with a known L-type VGCC blocker demonstrated a 57% decrease of calcium ion influx through activated VGCCs. Calcium imaging results also demonstrated that σ-1r agonists, (+)-N-allylnormetazocine hydrochloride [(+)-SKF10047] and (+)-Pentazocine, inhibited calcium ion influx through activated VGCCs. Antagonist treatment using BD1047 demonstrated a potentiation of calcium ion influx through activated VGCCs and abolished all inhibitory effects of the σ-1r agonists on VGCCs, implying that these ligands were acting through the σ-1r. An L-type VGCC blocker (Verapamil) also inhibited KCl activated VGCCs and when combined with the σ-1r agonists there was not a further decline in calcium entry suggesting similar mechanisms. Lastly, co-localization studies demonstrated that σ-1rs and L-type VGCCs are co-localized in purified RGCs. Taken together, these results indicated that σ-1r agonists can inhibit KCl induced calcium ion influx through activated L-type VGCCs in purified RGCs. This is the first report of attenuation of L-type VGCC signaling through the activation of σ-1rs in purified RGCs. The ability of σ-1rs to co-localize with L-type VGCCs in purified RGCs implied that these two proteins are in close proximity to each other and that such interactions regulate L-type VGCCs.
PLOS ONE | 2012
Alena Z. Minton; Nitasha R. Phatak; Dorota Stankowska; Shaoqing He; Hai-Ying Ma; Brett H. Mueller; Ming Jiang; Robert R. Luedtke; Shao-Hua Yang; Colby Brownlee; Raghu R. Krishnamoorthy
Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP) characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1) is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ETB) receptor expression was assessed in vivo, in the Morrisons ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ETB receptors in the retina, mainly in retinal ganglion cells (RGCs), nerve fiber layer (NFL), and also in the inner plexiform layer (IPL) and inner nuclear layer (INL). To determine the role of ETB receptors in neurodegeneration, Wistar-Kyoto wild type (WT) and ETB receptor-deficient (KO) rats were subjected to retrograde labeling with Fluoro-Gold (FG), following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ETB receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.
PLOS ONE | 2013
Shaoqing He; Alena Z. Minton; Hai-Ying Ma; Dorota Stankowska; Xiangle Sun; Raghu R. Krishnamoorthy
Previous studies showed that the endothelin B receptor (ETB) expression was upregulated and played a key role in neurodegeneration in rodent models of glaucoma. However, the mechanisms underlying upregulation of ETB receptor expression remain largely unknown. Using promoter-reporter assays, the 1258 bp upstream the human ETB promoter region was found to be essential for constitutive expression of ETB receptor gene in human non-pigmented ciliary epithelial cells (HNPE). The −300 to −1 bp and −1258 to −600 bp upstream promoter regions of the ETB receptor appeared to be the key binding regions for transcription factors. In addition, the crucial AP-1 binding site located at −615 to −624 bp upstream promoter was confirmed by luciferase assays and CHIP assays which were performed following overexpression of c-Jun in HNPE cells. Overexpression of either c-Jun or C/EBPβ enhanced the ETB receptor promoter activity, which was reflected in increased mRNA and protein levels of ETB receptor. Furthermore, knock-down of either c-Jun or C/EBPβ in HNPE cells was significantly correlated to decreased mRNA levels of both ETB and ETA receptor. These observations suggest that c-Jun and C/EBPβ are important for regulated expression of the ETB receptor in HNPE cells. In separate experiments, intraocular pressure (IOP) was elevated in one eye of Brown Norway rats while the corresponding contralateral eye served as control. Two weeks of IOP elevation produced increased expression of c-Jun and C/EBPβ in the retinal ganglion cell (RGC) layer from IOP-elevated eyes. The mRNA levels of c-Jun, ETA and ETB receptor were upregulated by 2.2-, 3.1- and 4.4-fold in RGC layers obtained by laser capture microdissection from retinas of eyes with elevated IOP, compared to those from contralateral eyes. Taken together, these data suggest that transcription factor AP-1 plays a key role in elevation of ETB receptor in a rodent model of ocular hypertension.
Investigative Ophthalmology & Visual Science | 2015
Dorota Stankowska; Alena Z. Minton; Margaret A. Rutledge; Brett H. Mueller; Nitasha R. Phatak; Shaoqing He; Hai-Ying Ma; Michael J. Forster; Thomas Yorio; Raghu R. Krishnamoorthy
PURPOSE Glaucoma is an optic neuropathy commonly associated with elevated intraocular pressure (IOP), leading to optic nerve head (ONH) cupping, axon loss, and apoptosis of retinal ganglion cells (RGCs), which could ultimately result in blindness. Brn3b is a class-4 POU domain transcription factor that plays a key role in RGC development, axon outgrowth, and pathfinding. Previous studies suggest that a decrease in Brn3b levels occurs in animal models of glaucoma. The goal of this study was to determine if adeno-associated virus (AAV)-directed overexpression of the Brn3b protein could have neuroprotective effects following elevated IOP-mediated neurodegeneration. METHODS Intraocular pressure was elevated in one eye of Brown Norway rats (Rattus norvegicus), following which the IOP-elevated eyes were intravitreally injected with AAV constructs encoding either the GFP (rAAV-CMV-GFP and rAAV-hsyn-GFP) or Brn3b (rAAV-CMV-Brn3b and rAAV-hsyn-Brn3b). Retina sections through the ONH were stained for synaptic plasticity markers and neuroprotection was assessed by RGC counts and visual acuity tests. RESULTS Adeno-associated virus-mediated expression of the Brn3b protein in IOP-elevated rat eyes promoted an upregulation of growth associated protein-43 (GAP-43), actin binding LIM protein (abLIM) and acetylated α-tubulin (ac-Tuba) both posterior to the ONH and in RGCs. The RGC survival as well as axon integrity score were significantly improved in IOP-elevated rAAV-hsyn-Brn3b-injected rats compared with those of the IOP-elevated rAAV-hsyn-GFP- injected rats. Additionally, intravitreal rAAV-hsyn-Brn3b administration significantly restored the visual optomotor response in IOP-elevated rat eyes. CONCLUSIONS Adeno-associated virus-mediated Brn3b protein expression may be a suitable approach for promoting neuroprotection in animal models of glaucoma.
PLOS ONE | 2017
Junming Wang; Hai-Ying Ma; Raghu R. Krishnamoorthy; Thomas Yorio; Shaoqing He
c-Jun, c-Jun N-terminal kinase(JNK) and endothelin B (ETB) receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ) immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP). In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE). The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs) and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK) were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression, thereby generating a positive feed-forward loop of endothelin receptor activation and expression. This feed-forward regulation may contribute to RGC death and astrocyte proliferation following ET-1 treatment.
Experimental Eye Research | 2014
Brett H. Mueller; Yong Park; Hai-Ying Ma; Adnan Dibas; Dorette Z Ellis; Abbot F. Clark; Thomas Yorio
Experimental Eye Research | 2015
Yong H. Park; Brett H. Mueller; Nolan Robert McGrady; Hai-Ying Ma; Thomas Yorio
Investigative Ophthalmology & Visual Science | 2013
Yong Park; Brett H. Mueller; Hai-Ying Ma; Thomas Yorio
Investigative Ophthalmology & Visual Science | 2017
Shaoqing He; Hai-Ying Ma; Thomas Yorio
Investigative Ophthalmology & Visual Science | 2015
Dorette Z Ellis; Linya Li; Yong H. Park; Brett H. Mueller; Hai-Ying Ma; Thomas Yorio