Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haibao Tang is active.

Publication


Featured researches published by Haibao Tang.


Nature | 2009

The Sorghum bicolor genome and the diversification of grasses

Andrew H. Paterson; John E. Bowers; Rémy Bruggmann; Inna Dubchak; Jane Grimwood; Heidrun Gundlach; Georg Haberer; Uffe Hellsten; Therese Mitros; Alexander Poliakov; Jeremy Schmutz; Manuel Spannagl; Haibao Tang; Xiyin Wang; Thomas Wicker; Arvind K. Bharti; Jarrod Chapman; F. Alex Feltus; Udo Gowik; Igor V. Grigoriev; Eric Lyons; Christopher A. Maher; Mihaela Martis; Apurva Narechania; Robert Otillar; Bryan W. Penning; Asaf Salamov; Yu Wang; Lifang Zhang; Nicholas C. Carpita

Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum–rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum’s drought tolerance.


Nature | 2008

The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)

Ray Ming; Shaobin Hou; Yun Feng; Qingyi Yu; Alexandre Dionne-Laporte; Jimmy H. Saw; Pavel Senin; Wei Wang; Benjamin V. Ly; Kanako L. T. Lewis; Lu Feng; Meghan R. Jones; Rachel L. Skelton; Jan E. Murray; Cuixia Chen; Wubin Qian; Junguo Shen; Peng Du; Moriah Eustice; Eric J. Tong; Haibao Tang; Eric Lyons; Robert E. Paull; Todd P. Michael; Kerr Wall; Danny W. Rice; Henrik H. Albert; Ming Li Wang; Yun J. Zhu; Michael C. Schatz

Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica’s distinguishing morpho-physiological, medicinal and nutritional properties.


Science | 2014

Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome

Boulos Chalhoub; Shengyi Liu; Isobel A. P. Parkin; Haibao Tang; Xiyin Wang; Julien Chiquet; Harry Belcram; Chaobo Tong; Birgit Samans; Margot Corréa; Corinne Da Silva; Jérémy Just; Cyril Falentin; Chu Shin Koh; Isabelle Le Clainche; Maria Bernard; Pascal Bento; Benjamin Noel; Karine Labadie; Adriana Alberti; Mathieu Charles; Dominique Arnaud; Hui Guo; Christian Daviaud; Salman Alamery; Kamel Jabbari; Meixia Zhao; Patrick P. Edger; Houda Chelaifa; David Tack

The genomic origins of rape oilseed Many domesticated plants arose through the meeting of multiple genomes through hybridization and genome doubling, known as polyploidy. Chalhoub et al. sequenced the polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed (canola), kale, and rutabaga. B. napus has undergone multiple events affecting differently sized genetic regions where a gene from one progenitor species has been converted to the copy from a second progenitor species. Some of these gene conversion events appear to have been selected by humans as part of the process of domestication and crop improvement. Science, this issue p. 950 The polyploid genome of oilseed rape exhibits evolution through homologous gene conversion. Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.


Nature | 2012

Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres

Andrew H. Paterson; Jonathan F. Wendel; Heidrun Gundlach; Hui Guo; Jerry Jenkins; Dianchuan Jin; Danny J. Llewellyn; Kurtis C. Showmaker; Shengqiang Shu; Mi-jeong Yoo; Robert L. Byers; Wei Chen; Adi Doron-Faigenboim; Mary V. Duke; Lei Gong; Jane Grimwood; Corrinne E. Grover; Kara Grupp; Guanjing Hu; Tae-Ho Lee; Jingping Li; Lifeng Lin; Tao Liu; Barry S. Marler; Justin T. Page; Alison W. Roberts; Elisson Romanel; William S. Sanders; Emmanuel Szadkowski; Xu Tan

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1–2 Myr ago, conferred about 30–36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum AtDt (in which ‘t’ indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


Science | 2008

Synteny and Collinearity in Plant Genomes

Haibao Tang; John E. Bowers; Xiyin Wang; Ray Ming; Maqsudul Alam; Andrew H. Paterson

Correlated gene arrangements among taxa provide a valuable framework for inference of shared ancestry of genes and for the utilization of findings from model organisms to study less-well-understood systems. In angiosperms, comparisons of gene arrangements are complicated by recurring polyploidy and extensive genome rearrangement. New genome sequences and improved analytical approaches are clarifying angiosperm evolution and revealing patterns of differential gene loss after genome duplication and differential gene retention associated with evolution of some morphological complexity. Because of variability in DNA substitution rates among taxa and genes, deviation from collinearity might be a more reliable phylogenetic character.


Nucleic Acids Research | 2012

MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity

Yupeng Wang; Haibao Tang; Jeremy D. DeBarry; Xu-fei Tan; Jingping Li; Xiyin Wang; Tae-Ho Lee; Huizhe Jin; Barry S. Marler; Hui Guo; Jessica C. Kissinger; Andrew H. Paterson

MCScan is an algorithm able to scan multiple genomes or subgenomes in order to identify putative homologous chromosomal regions, and align these regions using genes as anchors. The MCScanX toolkit implements an adjusted MCScan algorithm for detection of synteny and collinearity that extends the original software by incorporating 14 utility programs for visualization of results and additional downstream analyses. Applications of MCScanX to several sequenced plant genomes and gene families are shown as examples. MCScanX can be used to effectively analyze chromosome structural changes, and reveal the history of gene family expansions that might contribute to the adaptation of lineages and taxa. An integrated view of various modes of gene duplication can supplement the traditional gene tree analysis in specific families. The source code and documentation of MCScanX are freely available at http://chibba.pgml.uga.edu/mcscan2/.


Nucleic Acids Research | 2012

PGDD: a database of gene and genome duplication in plants.

Tae-Ho Lee; Haibao Tang; Xiyin Wang; Andrew H. Paterson

Genome duplication (GD) has permanently shaped the architecture and function of many higher eukaryotic genomes. The angiosperms (flowering plants) are outstanding models in which to elucidate consequences of GD for higher eukaryotes, owing to their propensity for chromosomal duplication or even triplication in a few cases. Duplicated genome structures often require both intra- and inter-genome alignments to unravel their evolutionary history, also providing the means to deduce both obvious and otherwise-cryptic orthology, paralogy and other relationships among genes. The burgeoning sets of angiosperm genome sequences provide the foundation for a host of investigations into the functional and evolutionary consequences of gene and GD. To provide genome alignments from a single resource based on uniform standards that have been validated by empirical studies, we built the Plant Genome Duplication Database (PGDD; freely available at http://chibba.agtec.uga.edu/duplication/), a web service providing synteny information in terms of colinearity between chromosomes. At present, PGDD contains data for 26 plants including bryophytes and chlorophyta, as well as angiosperms with draft genome sequences. In addition to the inclusion of new genomes as they become available, we are preparing new functions to enhance PGDD.


Plant Physiology | 2008

Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids

Eric Lyons; Brent Pedersen; Josh Kane; Maqsudul Alam; Ray Ming; Haibao Tang; Xiyin Wang; John E. Bowers; Andrew H. Paterson; Damon Lisch; Michael Freeling

In addition to the genomes of Arabidopsis (Arabidopsis thaliana) and poplar (Populus trichocarpa), two near-complete rosid genome sequences, grape (Vitis vinifera) and papaya (Carica papaya), have been recently released. The phylogenetic relationship among these four genomes and the placement of their three independent, fractionated tetraploidies sum to a powerful comparative genomic system. CoGe, a platform of multiple whole or near-complete genome sequences, provides an integrative Web-based system to find and align syntenic chromosomal regions and visualize the output in an intuitive and interactive manner. CoGe has been customized to specifically support comparisons among the rosids. Crucial facts and definitions are presented to clearly describe the sorts of biological questions that might be answered in part using CoGe, including patterns of DNA conservation, accuracy of annotation, transposability of individual genes, subfunctionalization and/or fractionation of syntenic gene sets, and conserved noncoding sequence content. This précis of an online tutorial, CoGe with Rosids (http://tinyurl.com/4a23pk), presents sample results graphically.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Angiosperm genome comparisons reveal early polyploidy in the monocot lineage

Haibao Tang; John E. Bowers; Xiyin Wang; Andrew H. Paterson

Although the timing and extent of a whole-genome duplication occurring in the common lineage of most modern cereals are clear, the existence or extent of more ancient genome duplications in cereals and perhaps other monocots has been hinted at, but remain unclear. We present evidence of additional duplication blocks of deeper hierarchy than the pancereal rho (ρ) duplication, covering at least 20% of the cereal transcriptome. These more ancient duplicated regions, herein called σ, are evident in both intragenomic and intergenomic analyses of rice and sorghum. Resolution of such ancient duplication events improves the understanding of the early evolutionary history of monocots and the origins and expansions of gene families. Comparisons of syntenic blocks reveal clear structural similarities in putatively homologous regions of monocots (rice) and eudicots (grapevine). Although the exact timing of the σ-duplication(s) is unclear because of uncertainties of the molecular clock assumption, our data suggest that it occurred early in the monocot lineage after its divergence from the eudicot clade.


Genome Biology | 2014

Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea

Isobel A. P. Parkin; Chushin Koh; Haibao Tang; Stephen J. Robinson; Sateesh Kagale; Wayne E. Clarke; Christopher D. Town; John Nixon; Vivek Krishnakumar; Shelby Bidwell; Harry Belcram; Matthew G. Links; Jérémy Just; Carling Clarke; Tricia Bender; Terry Huebert; Annaliese S. Mason; J. Chris Pires; Guy C. Barker; Jonathan D. Moore; Peter Glen Walley; Sahana Manoli; Jacqueline Batley; David Edwards; Matthew N. Nelson; Xiyin Wang; Andrew H. Paterson; Graham J. King; Ian Bancroft; Boulos Chalhoub

BackgroundBrassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus.ResultsWe generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event.ConclusionsDifferential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.

Collaboration


Dive into the Haibao Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xingtan Zhang

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James C. Schnable

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Chenyong Miao

Fujian Agriculture and Forestry University

View shared research outputs
Top Co-Authors

Avatar

Liangsheng Zhang

Fujian Agriculture and Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge