Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haibo Zhu is active.

Publication


Featured researches published by Haibo Zhu.


PLOS ONE | 2013

A 1H NMR-Based Metabonomic Investigation of Time-Related Metabolic Trajectories of the Plasma, Urine and Liver Extracts of Hyperlipidemic Hamsters

Jiang Cy; Kangmin Yang; Liu Yang; Zhaoxia Miao; Ying-Hong Wang; Haibo Zhu

The hamster has been previously found to be a suitable model to study the changes associated with diet-induced hyperlipidemia in humans. Traditionally, studies of hyperlipidemia utilize serum- or plasma-based biochemical assays and histopathological evaluation. However, unbiased metabonomic technologies have the potential to identify novel biomarkers of disease. Thus, to obtain a better understanding of the progression of hyperlipidemia and discover potential biomarkers, we have used a proton nuclear magnetic resonance spectroscopy (1H-NMR)-based metabonomics approach to study the metabolic changes occurring in the plasma, urine and liver extracts of hamsters fed a high-fat/high-cholesterol diet. Samples were collected at different time points during the progression of hyperlipidemia, and individual proton NMR spectra were visually and statistically assessed using two multivariate analyses (MVA): principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). Using the commercial software package Chenomx NMR suite, 40 endogenous metabolites in the plasma, 80 in the urine and 60 in the water-soluble fraction of liver extracts were quantified. NMR analysis of all samples showed a time-dependent transition from a physiological to a pathophysiological state during the progression of hyperlipidemia. Analysis of the identified biomarkers of hyperlipidemia suggests that significant perturbations of lipid and amino acid metabolism, as well as inflammation, oxidative stress and changes in gut microbiota metabolites, occurred following cholesterol overloading. The results of this study substantially broaden the metabonomic coverage of hyperlipidemia, enhance our understanding of the mechanism of hyperlipidemia and demonstrate the effectiveness of the NMR-based metabonomics approach to study a complex disease.


Journal of Asian Natural Products Research | 2005

Therapeutic effects of hydroxysafflor yellow A on focal cerebral ischemic injury in rats and its primary mechanisms

Haibo Zhu; Ling Zhang; Zheng-Hua Wang; Jing-Wei Tian; Fenghua Fu; Ke Liu; Changling Li

The therapeutic effects of hydroxysafflor yellow A (HSYA), extracted from Carthamus tinctorius. L, on focal cerebral ischemic injury in rats and its related mechanisms have been investigated. Focal cerebral ischemia in rats were made by inserting a monofilament suture into internal carotid artery to block the origin of the middle cerebral artery and administrated by HSYA via sublingular vein injection in doses of 1.5, 3.0, 6.0u2009mgu2009kg−1 at 30u2009min after the onset of ischemia, in comparison with the potency of nimodipine at a dose of 0.2u2009mgu2009kg−1. Then, 24u2009h later, the evaluation for neurological deficit scores of the rats were recorded and postmortem infarct areas determined by quantitative image analysis. At the end of the experiment, blood samples were taken to determine plasma 6-Keto-PGF1α/TXB2 by radioimmunoassays and blood rheological parameters. The effects exerted by HSYA on thrombosis formation by artery vein by-pass method and ADP-induced platelet aggregation in vivo and in vitro were investigated, respectively. The results indicated that more than 30% of the area of ischemic cerebrum was observed in the ischemic model group. HSYA dose-dependently improved the neurological deficit scores and reduced the cerebral infarct area, and HSYA bore a similarity in potency of the therapeutic effects on focal cerebral ischemia to nimodipine. The inhibition rates of thrombosis formation by HSYA at the designated doses were 20.3%, 43.6% and 54.2%, respectively, compared with saline-treated group. Inhibitory activities of HSYA were observed on ADP-induced platelets aggregation in a dose-dependent manner, and the maximum inhibitory aggregation rate of HSYA was 41.8%. HSYA provided a suppressive effect on production of TXA2 without significant effect on plasma PGI2 concentrations. Blood rheological parameters were markedly improved by HSYA, such as whole blood viscosity (from to ), plasma viscosity (from to ), deformability (from to ) and aggregation of erythrocyte (from to ), but no significant effect of HSYA on homatocrit was found (from to ). HSYA appears to be a good potential agent to treat focal cerebral ischemia, and the underlying mechanisms exerted by HSYA might be involved in its inhibitory effects on thrombosis formation and platelet aggregation as well as its beneficial action on regulation of PGI2/TXA2 and blood rheological changes in rats.


Evidence-based Complementary and Alternative Medicine | 2012

Cardioprotective effects of salvianolic Acid a on myocardial ischemia-reperfusion injury in vivo and in vitro.

Huaying Fan; Liu Yang; Fenghua Fu; Hui Xu; Qinggang Meng; Haibo Zhu; Lirong Teng; Mingyan Yang; Leiming Zhang; Ziliang Zhang; Ke Liu

Salvianolic acid A (SAA), one of the major active components of Danshen that is a traditional Chinese medicine, has been reported to possess protective effect in cardiac diseases and antioxidative activity. This study aims to investigate the cardioprotection of SAA in vivo and in vitro using the model of myocardial ischemia-reperfusion in rat and hydrogen peroxide (H2O2)-induced H9c2 rat cardiomyoblasts apoptosis. It was found that SAA significantly limited infarct size of ischemic myocardium when given immediately prior to reperfusion. SAA also significantly suppressed cellular injury and apoptotic cell death. Additionally, the results of western blot and phospho-specific antibody microarray analysis showed that SAA could up-regulate Bcl-2 expression and increase the phosphorylation of proteins such as Akt, p42/p44 extracellular signal-related kinases (Erk1/2), and their related effectors. The phosphorylation of those points was related to suppress apoptosis. In summary, SAA possesses marked protective effect on myocardial ischemia-reperfusion injury, which is related to its ability to reduce myocardial cell apoptosis and damage induced by oxidative stress. The protection is achieved via up-regulation of Bcl-2 expression and affecting protein phosphorylation. These findings indicate that SAA may be of value in cardioprotection during myocardial ischemia-reperfusion injury, which provide pharmacological evidence for clinical application.


Planta Medica | 2011

Effects of ligustilide on lipopolysaccharide-induced endotoxic shock in rabbits.

Meng Shao; Kai Qu; Ke Liu; Yuqin Zhang; Ling Zhang; Zeqin Lian; Tingting Chen; Junfeng Liu; Aili Wu; Yue Tang; Haibo Zhu

In this study, we investigated the protective effects of ligustilide against lipopolysaccharide (LPS)-induced endotoxic shock in Japanese white rabbits and attempted to elucidate the possible mechanism underlying these effects. Forty-two rabbits were randomized into 6 groups: normal group, LPS group, dexamethasone group (5 mg/kg), and 3 ligustilide groups (20, 40, and 80 mg/kg). After the rabbits had received a LPS infusion (0.3 mg/kg), dexamethasone and ligustilide were intravenously injected at the above-mentioned dosages. Heart rate (HR), mean arterial pressure (MAP), and rectal temperature (RT) were recorded throughout the experiment. Tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), and nitric oxide (NO) levels were measured by radioimmunoassay every 30 minutes for the first hour and every 60 minutes thereafter until the end of the experiment. The serum levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (GGT), creatinine kinase (CK), lactate dehydrogenase (LDH), total protein (TP), creatinine (Scr), blood urea nitrogen (BUN), total bilirubin (T. BIL), and counts of formed elements of blood were measured at 0, 120, and 300 minutes after the administration of LPS. Hemorheology was assayed 300 minutes after the LPS injection. The vital organs were collected and weighed before histopathologic examination. A comparison between the LPS group and the ligustilide groups showed that ligustilide significantly inhibited the decline in MAP and RT and decreased the levels of TNF- α, IL-1 β, and NO, but had no apparent effect on HR. Ligustilide also inhibited the increase in the levels of biochemical markers, such as ALT, AST, ALP, GGT, LDH, CK, BUN, and Scr, but showed no apparent effect on T. BIL and TP. Furthermore, ligustilide partly restored the function of injured vital organs, including the heart, liver, lungs, and kidneys. These results suggest that ligustilide protected the rabbits against LPS-induced endotoxic shock.


PLOS ONE | 2012

Beneficial Metabolic Effects of 2′,3′,5′-tri-acetyl-N6- (3-Hydroxylaniline) Adenosine in the Liver and Plasma of Hyperlipidemic Hamsters

Yang Sun; Zeqin Lian; Jiang Cy; Ying-Hong Wang; Haibo Zhu

Background Pharmaceutical research of hyperlipidemia has been commonly pursued using traditional approaches. However, unbiased metabonomics attempts to explore the metabolic signature of hyperlipidemia in a high-throughput manner to understand pathophysiology of the disease process. Methodology/Principal Findings As a new way, we performed 1H NMR-based metabonomics to evaluate the beneficial effects of 2′,3′,5′-tri-acetyl-N6- (3-hydroxylaniline) adenosine (WS070117) on plasma and liver from hyperlipidemic Syrian golden hamsters. Both plasma and liver profiles provided a clearer distinction between the control and hyperlipidemic hamsters. Compared to control animals, hyperlipidemic hamsters showed a higher content of lipids (triglyceride and cholesterol), lactate and alanine together with a lower content of choline-containing compounds (e.g., phosphocholine, phosphatidylcholine, and glycerophosphocholine) and betaine. As a result, metabonomics-based findings such as the PCA and OPLS-DA plotting of metabolic state and analysis of potential biomarkers in plasma and liver correlated well to the assessment of biochemical assays, Oil Red O staining and in vivo ultrasonographic imaging suggesting that WS070117 was able to regulate lipid content and displayed more beneficial effects on plasma and liver than simvastatin. Conclusions/Significance This work demonstrates the promise of applying 1H NMR metabonomics to evaluate the beneficial effects of WS070117 which may be a good drug candidate for hyperlipidemia.


Journal of Asian Natural Products Research | 2011

Beneficial effects of cordycepin on metabolic profiles of liver and plasma from hyperlipidemic hamsters

Yang Sun; Ying-Hong Wang; Kai Qu; Haibo Zhu

In this study, 1H NMR-based metabonomics was applied to evaluate the beneficial effects of cordycepin (3′-deoxyadenosine), a natural monomer compound, on endogenous metabolic profiles of liver and plasma from hyperlipidemic Syrian golden hamsters. Hyperlipidemia was successfully established in hamsters fed by a high-fat diet for 2 weeks. The hyperlipidemic hamsters were treated with an oral administration of simvastatin (2 mg kg− 1) or cordycepin (140 mg kg− 1) for consecutive 4 weeks. The metabolic profiles of plasma and intact liver tissues were established using 1H NMR spectroscopy. The results showed higher contents of lipids (triglyceride and cholesterol), lactate, acetate, alanine, glutamine together with lower contents of choline-containing compounds (e.g. phosphocholine, phosphatidylcholine, and glycerophosphocholine), glucose, and glycogen in plasma and liver samples from hyperlipidemic hamsters than those in controls. Cordycepin afforded a little lipid-regulating activity on plasma but more beneficial effects on liver, implicating that cordycepin might have a protective effect on liver under fatty liver condition.


Journal of Asian Natural Products Research | 2010

Salvianolic acid A displays cardioprotective effects in in vitro models of heart hypoxia/reoxygenation injury.

Yuqin Zhang; Yue Tang; Aili Wu; Haibo Zhu

Oxidative stress induced by overproduction of reactive oxygen species (ROS) plays an important role in hypoxia/reoxygenation (H/R) injury. In the present study, effects of salvianolic acid A (1) on heart H/R injury through its antioxidant activity were examined, using a molecule-based ROS scavenging system and cardiomyocyte model of H/R injury, as well as isolated rat heart model. As a result, 1 showed a potent antioxidant activity, scavenging all of the tested ROS and DPPH (2,2-diphenyl-1-picrylhydrazyl). The antioxidant effect of 1 was also observed in cardiomyocytes exposed to H/R. Compound 1 remarkably decreased dihydroethidium and dichlorofluorescein fluorescence and increased cell viability and mitochondrial membrane potential, ΔΨm, when compared to the H/R group. In isolated rat hearts exposed to H/R, 1 markedly increased the coronary flow, the peak of pressure development and the valley of pressure development, and significantly reduced the left ventricular end diastolic pressure when compared to the H/R group. These results suggested that 1 had significant protective effects against H/R-induced myocardial injury through its antioxidant activity.


Evidence-based Complementary and Alternative Medicine | 2013

A Systematic, Integrated Study on the Neuroprotective Effects of Hydroxysafflor Yellow A Revealed by (1)H NMR-Based Metabonomics and the NF-κB Pathway.

Yuanyan Liu; Zeqin Lian; Haibo Zhu; Yinghong Wang; Shi-Shan Yu; Tingting Chen; Jing Qu; Jianbei Li; Shuang-Gang Ma; Xianhong Chen

Hydroxysafflor yellow A (HSYA) is the main active component of the Chinese herb Carthamus tinctorius L.. Purified HSYA is used as a neuroprotective agent to prevent cerebral ischemia. Injectable safflor yellow (50u2009mg, containing 35u2009mg HSYA) is widely used to treat patients with ischemic cardiocerebrovascular disease. However, it is unknown how HSYA exerts a protective effect on cerebral ischemia at the molecular level. A systematical integrated study, including histopathological examination, neurological evaluation, blood-brain barrier (BBB), metabonomics, and the nuclear factor-κB (NF-κB) pathway, was applied to elucidate the pathophysiological mechanisms of HSYA neuroprotection at the molecular level. HSYA could travel across the BBB, significantly reducing the infarct volume and improving the neurological functions of rats with ischemia. Treatment with HSYA could lead to relative corrections of the impaired metabolic pathways through energy metabolism disruption, excitatory amino acid toxicity, oxidative stress, and membrane disruption revealed by 1H NMR-based metabonomics. Meanwhile, HSYA treatment inhibits the NF-κB pathway via suppressing proinflammatory cytokine expression and p65 translocation and binding activity while upregulating an anti-inflammatory cytokine.


PLOS ONE | 2015

Structure Elucidation of the Metabolites of 2', 3', 5'-Tri-O-Acetyl-N6-(3-Hydroxyphenyl) Adenosine in Rat Urine by HPLC-DAD, ESI-MS and Off-Line Microprobe NMR.

Wei Guo; Mengxia Jin; Zhaoxia Miao; Kai Qu; Xia Liu; Peicheng Zhang; Hailin Qin; Haibo Zhu; Ying-Hong Wang

2, 3, 5-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine (also known as WS070117) is a new adenosine analog that displays anti-hyperlipidemic activity both in vitro and in vivo experiments as shown in many preliminary studies. Due to its new structure, little is known about the metabolism of WS070117. Hence, the in vivo metabolites of WS070117 in rat urine following oral administration were investigated. Identification of the metabolites was conducted using the combination of high-performance liquid chromatography (HPLC) coupled with diode array detector (DAD), ion trap electrospray ionization-mass spectrometry (ESI-MS), and off-line microprobe nuclear magnetic resonance (NMR) measurements. Seven metabolites were obtained as pure compounds at the sub-milligram to milligram levels. Results of structure elucidation unambiguously revealed that the phase I metabolite, N6-(3-hydroxyphenyl) adenosine (M8), was a hydrolysate of WS070117 by hydrolysis on the three ester groups. N6-(3-hydr-oxyphenyl) adenine (M7), also one of the phase I metabolites, was the derivative of M8 by the loss of ribofuranose. In addition to two phase I metabolites, there were five phase II metabolites of WS070117 found in rat urine. 8-hydroxy-N6-(3-hydroxy-phenyl) adenosine (M6) was the product of M7 by hydrolysis at position 8. The other four were elucidated to be N6-(3-O-β-D-glucuronyphenyl) adenine (M2), N8-hydroxy-N6-(3-O-sulfophenyl) adenine (M3), N6-(3-O-β-D-glucuronyphenyl) adenosine (M4), and N6-(3-O- sulfophenyl) adenosine (M5). Phase II metabolic pathways were proven to consist of hydroxylation, glucuronidation and sulfation. This study provides new and valuable information on the metabolism of WS070117, and also demonstrates the HPLC/MS/off-line microprobe NMR approach as a robust means for rapid identification of metabolites.


Journal of Chromatography B | 2018

Comprehensive characterization of in vitro and in vivo metabolites of 2′,3′,5′‑tri‑O‑acetyl‑N6‑(3‑hydroxyphenyl) adenosine and study of the metabolites distribution in rats by combined methods of HPLC-DAD, off-line cryoNMR, and HPLC-QTOFMS

Mengxia Jin; Na Guo; Tianqi Li; Xia Liu; Shanshan Sun; Xiangju Jin; Haibo Zhu; Hailin Qin; Ying-Hong Wang

The compound 2,3,5‑tri‑O‑acetyl‑N6‑(3‑hydroxyphenyl) adenosine (also known as IMM-H007) is a new adenosine analogue that displays anti-hyperlipidaemic activity in many preliminary studies. To clarify its biotransformation process, in vitro and in vivo metabolic patterns of IMM-H007 in rat liver microsomes (RLMs), urine, feces, serum, and various tissues were investigated using high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD), off-line cryogenically cooled probe nuclear magnetic resonance (cryoNMR), and high-performance liquid chromatography quadrupole TOF MS (HPLC-QTOFMS) measurements. A total of 21 metabolites were detected and identified based on accurate mass measurements, diagnostic product ions, and 1D and 2D NMR data. All of the 21 metabolites were detected in vivo besides the 7 ones (LM1-3, LM4a-b, LM5, LM6 (M8)) in vitro. Among them, eight metabolites were phase I metabolites composed of the hydrolysis products LM1-3, LM4a, LM4b, LM5 and M7-8, and hydrolysis and hydroxylation products M6. Others were phase II metabolites including glucuronidation products M2, M4, M9, M11a-c, and M12a-c; and sulfation products M3, M5, and M10. Notably, 14 metabolites (LM1-3, LM4a-b, LM5, M9-10, M11a-c, M12a-c) were unreported before and the distribution of IMM-H007 and its all metabolites was reported for the first time. The results revealed IMM-H007 was metabolized mainly in the small intestine and serum, kidney, stomach, small and large intestines were important samples for metabolites presence. This work improves understanding of the metabolism, distribution, and excretion of IMM-H007, and demonstrates the HPLC/HPLC-MS/off-line cryoNMR approach can be applied for detection and identification of metabolites in complex biological matrices.

Collaboration


Dive into the Haibo Zhu's collaboration.

Top Co-Authors

Avatar

Ying-Hong Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aili Wu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hailin Qin

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jiang Cy

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jinlan Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Kai Qu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Mengxia Jin

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Pei-Cheng Zhang

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge