Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haihong Kang is active.

Publication


Featured researches published by Haihong Kang.


Veterinary Immunology and Immunopathology | 2013

The stimulatory effect of TLRs ligands on maturation of chicken bone marrow-derived dendritic cells.

Jinfeng Liang; Jia Fu; Haihong Kang; Jian Lin; Qinghua Yu; Qian Yang

Dendritic cells (DCs) are crucial for initiation of both innate and adaptive immune responses. TLR ligands combine with Toll-like receptors (TLRs) expressed on the DC surface and induce DC maturation. The potential effect of three types of TLR ligands (Bacillus subtilis (B. subtilis) spores, polyinosinic-polycytidylic acid and CpG oligodeoxynucleotides) on chicken bone marrow-derived DCs (chBM-DCs) maturation was studied. The chBM-DCs cultured in presence of recombinant chicken granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 displayed the typical morphology of DCs after 7 days of culture. These immature chBM-DCs up-regulated the expression of MHC-II and of the putative CD11c, but had yet low to moderate levels of the CD40 and CD86 co-stimulatory molecules. After stimulation by the TLR ligands, the chBM-DCs displayed a more mature morphologic phenotype, significantly increased the CD40 and CD86 cell surface expression levels and gained the ability to stimulate proliferation of naive T cells in the allogeneic mixed lymphocyte reaction, compared to the immature chBM-DCs. In conclusion, our data demonstrated that all three TLR ligands were strong stimuli for driving chBM-DCs maturation in vitro, with B. subtilis spores being the most efficient.


PLOS ONE | 2013

Characteristics of nasal-associated lymphoid tissue (NALT) and nasal absorption capacity in chicken.

Haihong Kang; Mengfei Yan; Qinghua Yu; Qian Yang

As the main mucosal immune inductive site of nasal cavity, nasal-associated lymphoid tissue (NALT) plays an important role in both antigen recognition and immune activation after intranasal immunization. However, the efficiency of intranasal vaccines is commonly restricted by the insufficient intake of antigen by the nasal mucosa, resulting from the nasal mucosal barrier and the nasal mucociliary clearance. The distribution of NALT and the characteristic of nasal cavity have already been described in humans and many laboratory rodents, while data about poultry are scarce. For this purpose, histological sections of the chicken nasal cavities were used to examine the anatomical structure and histological characteristics of nasal cavity. Besides, the absorptive capacity of chicken nasal mucosa was also studied using the materials with different particle size. Results showed that the NALT of chicken was located on the bottom of nasal septum and both sides of choanal cleft, which mainly consisted of second lymphoid follicle. A large number of lymphocytes were distributed under the mucosal epithelium of inferior nasal meatus. In addition, there were also diffuse lymphoid tissues located under the epithelium of the concha nasalis media and the walls of nasal cavity. The results of absorption experiment showed that the chicken nasal mucosa was capable to absorb trypan blue, OVA, and fluorescent latex particles. Inactivated avian influenza virus (IAIV) could be taken up by chicken nasal mucosa except for the stratified squamous epithelium sites located on the forepart of nasal cavity. The intake of IAIV by NALT was greater than that of the nasal mucosa covering on non-lymphoid tissue, which could be further enhanced after intranasal inoculation combined with sodium cholate or CpG DNA. The study on NALT and nasal absorptive capacity will be benefit for further understanding of immune mechanisms after nasal vaccination and development of nasal vaccines for poultry.


Poultry Science | 2012

Effect of intranasal immunization with inactivated avian influenza virus on local and systemic immune responses in ducks

Haihong Kang; Huhu Wang; Qinghua Yu; Qian Yang

To evaluate the effects of co-administration of inactivated avian influenza H9N2 virus and adjuvants in waterfowls, 10-d-old ducks were immunized intranasally with inactivated avian influenza virus (IAIV) combined with CpG DNA and sodium cholate. Immunoglobulin A and IgG antibody levels in throat and tracheal tissues increased significantly, as did specific IgA and IgG antibody levels in the serum after intranasal immunization with IAIV combined with CpG DNA and sodium cholate, compared with immunization with IAIV only. Furthermore, enhanced hemagglutination inhibition titers were also detected in serum samples taken between the third and seventh weeks after immunization with IAIV and both adjuvants compared with IAIV alone. The expression of IL-2 and IL-6 in tracheal and lung tissues increased significantly in the early period after booster immunization. However, the enhancement induced by a single adjuvant was insignificant, and no significant change was detected in the antibody titers or cytokine levels between the ducks that received IAIV alone or saline. In the viral challenge study, prior administration of both CpG DNA and sodium cholate with IAIV reduced the viral titers in the oropharynx and cloaca swabs. Our study suggests that the combination of CpG DNA and sodium cholate could be beneficial to immunization with inactivated H9N2 virus by enhancing the local and systemic immune responses.


Poultry Science | 2013

Comparison of 3 kinds of Toll-like receptor ligands for inactivated avian H5N1 influenza virus intranasal immunization in chicken.

Jinfeng Liang; Jia Fu; Haihong Kang; Jian Lin; Qinghua Yu; Qian Yang

To evaluate the effects of co-administration of inactivated avian influenza H5N1 virus (IAIV) and different Toll-like receptor (TLR) ligands in chickens, 10-d-old chickens were immunized intranasally with IAIV and TLR ligand [Bacillus subtilis spores, polyinosinic-polycytidylic acid, and CpG oligodeoxynucleotides (CpG-ODN), respectively]. The results showed that both anti-avian influenza virus (AIV) specific secretory IgA level in respiratory tract and anti-AIV specific IgG level in serum significantly increased, as well as the expressions of IL-12, interferon-γ, IL-6, and TLR in the nasal cavity and trachea after intranasal immunization with IAIV and TLR ligand. Among the used TLR ligands, B. subtilis spores as the adjuvant for nasal IAIV had the strongest effect on the expression of IL-6 and IL-12 (P < 0.01), whereas the CpG-ODN could present an advantageous effect on the induction of anti-AIV specific IgG and neutralization antibodies (P < 0.01). The chickens that were previously co-administrated with IAIV and B. subtilis spores could survive at an improved rate upon challenge by live AIV H5N1 virus. Our study suggested that B. subtilis spores, polyinosinic-polycytidylic acid, or CpG-ODN all could effectively enhance the local and systemic immune responses to IAIV in chickens. Considering of the effects and cost of these TLR ligands, we prospected that B. subtilis spores might serve as a more affordable and efficacious mucosal adjuvant for nasal IAIV in chickens.


Human Vaccines & Immunotherapeutics | 2013

Mucosal Lactobacillus vectored vaccines

Qinghua Yu; Liqi Zhu; Haihong Kang; Qian Yang

Traditional non-gastrointestinal vaccines can prevent effectively the invasion of pathogens; however, these vaccines are less effective against mucosal infections because there is not a sufficient immune response at the mucosa. Most pathogens invade via a mucosal pathway (oral, intranasal, or vaginal).1 It is widely accepted that Lactobacillus species play a critical role as commensals in the gastrointestinal (GI) tract.2 Their ability to survive in the digestive tract, their close association with the intestinal epithelium, their immunomodulatory properties and their safety even when consumed in large amounts make lactobacilli attractive candidates for live vehicles for the delivery of immunogens to the intestinal mucosa.3 The oral or intranasal administration of Lactobacillus-based vaccines is a promising method to control mucosal infection because these vaccines could induce strong humoral and cellular immune responses both in the blood and at mucosal sites.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2014

Characterization of Nasal Cavity-Associated Lymphoid Tissue in Ducks

Haihong Kang; Mengfei Yan; Qinghua Yu; Qian Yang

The nasal mucosa is involved in immune defense, as it is the first barrier for pathogens entering the body through the respiratory tract. The nasal cavity‐associated lymphoid tissue (NALT), which is found in the mucosa of the nasal cavity, is considered to be the main mucosal immune inductive site in the upper respiratory tract. NALT has been found in humans and many mammals, which contributes to local and systemic immune responses after intranasal vaccination. However, there are very few data on NALT in avian species, especially waterfowl. For this study, histological sections of the nasal cavities of Cherry Valley ducks were used to examine the anatomical location and histological characteristics of NALT. The results showed that several lymphoid aggregates are present in the ventral wall of the nasal cavity near the choanal cleft, whereas several more lymphoid aggregates were located on both sides of the nasal septum. In addition, randomly distributed intraepithelial lymphocytes and isolated lymphoid follicles were observed in the regio respiratoria of the nasal cavity. There were also a few lymphoid aggregates located in the lamina propria of the regio vestibularis, which was covered with a stratified squamous epithelium. This study focused on the anatomic and histological characteristics of the nasal cavity of the duck and performed a systemic overview of NALT. This will be beneficial for further understanding of immune mechanisms after nasal vaccination and the development of effective nasal vaccines for waterfowls. Anat Rec, 297:916–924, 2014.


Poultry Science | 2013

A novel combined adjuvant strongly enhances mucosal and systemic immunity to low pathogenic avian influenza after oral immunization in ducks

Haihong Kang; Hongli Wang; Qinghua Yu; Qian Yang

As natural reservoirs of avian influenza viruses, waterfowl play an important role in the generation, spread, and enzootic transmission of avian influenza. To prevent avian influenza in waterfowl through a simple, noninvasive, and needle-free route, ducks were immunized orally with an inactivated avian influenza virus (H9N2, IAIV) combined with CpG DNA and high-dose glucose, and then the local and systemic immune responses of these ducks were investigated. In addition, the immune protection was assayed after viral challenge. After the oral administration of IAIV combined with CpG DNA and glucose, the expression levels of interleukin-2 and interleukin-6 in the small intestine tissues increased significantly in the early period after booster immunization relative to the levels after immunization with IAIV and a single adjuvant. Significant increases were also observed in the IgA and IgG antibody levels in the local intestinal tract tissues and serum at wk 3, 5, and 7 after the first immunization. Furthermore, enhanced hemagglutination inhibition titers were also detected in serum samples taken between the third and seventh weeks after immunization with IAIV and both adjuvants. In the viral challenge and transmission study, the prior administration of IAIV combined with both CpG DNA and glucose reduced the viral titers observed for the cloaca swabs and colon tissues of challenged ducks and prevented virus transmission between ducks. Our study suggests that the combination of CpG DNA and high-dose glucose can improve immunization with inactivated H9N2 virus by enhancing the local and systemic immune responses and reducing viral shedding.


British Poultry Science | 2015

CpG oligonucleotides and Astragalus polysaccharides are effective adjuvants in cultures of avian bone-marrow-derived dendritic cells

Jian Lin; Haihong Kang; Jinfeng Liang; Jia Fu; Qinghua Yu; Qian Yang

Abstract The potential use of CpG oligodeoxynucleotides and/or Astragalus polysaccharide (APS) as adjuvants for the culture of chicken bone-marrow-derived dendritic cells (chBM-DCs) was investigated. Chicken dendritic cells (DCs) were isolated and cultured in the presence of recombinant chicken granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4. The chBM-DC displayed typical DC morphology and expressed DC surface markers (MHC-II and CD11c). Cultured chBM-DC showed effective T-cell activation in vitro, based on a mixed lymphocyte response (MLR). Flow cytometry analysis showed an increased proportion of cells expressing CD40 and CD80 in the APS-stimulated culture, compared to the control culture. In the MLR, the APS- and CpG-stimulated chBM-DC could activate T-cells more than control chBM-DC. Real-time PCR assays showed that CpG can activate the TLR21 and an inflammatory response, while APS just reduced the expression of IRF-3. The results demonstrated that in vitro the adjuvant CpG can stimulate chBM-DC to mature by activation of the TLR-signalling pathway, whereas the adjuvant APS stimulates maturation of chBM-DC in vitro to a lesser degree and by another mechanism.


Poultry Science | 2013

Effects of different CpG oligodeoxynucleotides with inactivated avian H5N1 influenza virus on mucosal immunity of chickens1

Jia Fu; Jinfeng Liang; Haihong Kang; Jian Lin; Qinghua Yu; Qian Yang


Poultry Science | 2014

The stimulatory effect of different CpG oligonucleotides on the maturation of chicken bone marrow-derived dendritic cells

Jia Fu; Jinfeng Liang; Haihong Kang; Jian Lin; Qinghua Yu; Qian Yang

Collaboration


Dive into the Haihong Kang's collaboration.

Top Co-Authors

Avatar

Qian Yang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qinghua Yu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jia Fu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jian Lin

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jinfeng Liang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hongli Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mengfei Yan

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huhu Wang

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge