Haihong Zong
Albert Einstein College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haihong Zong.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Haihong Zong; Jian Ming Ren; Lawrence H. Young; Marc Pypaert; James Mu; Morris J. Birnbaum; Gerald I. Shulman
Mitochondrial biogenesis is a critical adaptation to chronic energy deprivation, yet the signaling mechanisms responsible for this response are poorly understood. To examine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved fuel sensor, in mitochondrial biogenesis we studied transgenic mice expressing a dominant-negative mutant of AMPK in muscle (DN-AMPK). Both DN-AMPK and WT mice were treated with β-guanidinopropionic acid (GPA), a creatine analog, which led to similar reductions in the intramuscular ATP/AMP ratio and phosphocreatine concentrations. In WT mice, GPA treatment resulted in activation of muscle AMPK and mitochondrial biogenesis. However, the same GPA treatment in DN-AMPK mice had no effect on AMPK activity or mitochondrial content. Furthermore, AMPK inactivation abrogated GPA-induced increases in the expression of peroxisome proliferator-activated receptor γ coactivator 1α and calcium/calmodulin-dependent protein kinase IV (both master regulators of mitochondrial biogenesis). These data demonstrate that by sensing the energy status of the muscle cell, AMPK is a critical regulator involved in initiating mitochondrial biogenesis.
Journal of Clinical Investigation | 2001
Jason K. Kim; Ariel Zisman; Jonathan J. Fillmore; Odile D. Peroni; Ko Kotani; Pascale Perret; Haihong Zong; Jianying Dong; C. Ronald Kahn; Barbara B. Kahn; Gerald I. Shulman
Using cre/loxP gene targeting, transgenic mice with muscle-specific inactivation of the GLUT4 gene (muscle GLUT4 KO) were generated and shown to develop a diabetes phenotype. To determine the mechanism, we examined insulin-stimulated glucose uptake and metabolism during hyperinsulinemic-euglycemic clamp in control and muscle GLUT4 KO mice before and after development of diabetes. Insulin-stimulated whole body glucose uptake was decreased by 55% in muscle GLUT4 KO mice, an effect that could be attributed to a 92% decrease in insulin-stimulated muscle glucose uptake. Surprisingly, insulins ability to stimulate adipose tissue glucose uptake and suppress hepatic glucose production was significantly impaired in muscle GLUT4 KO mice. To address whether these latter changes were caused by glucose toxicity, we treated muscle GLUT4 KO mice with phloridzin to prevent hyperglycemia and found that insulin-stimulated whole body and skeletal muscle glucose uptake were decreased substantially, whereas insulin-stimulated glucose uptake in adipose tissue and suppression of hepatic glucose production were normal after phloridzin treatment. In conclusion, these findings demonstrate that a primary defect in muscle glucose transport can lead to secondary defects in insulin action in adipose tissue and liver due to glucose toxicity. These secondary defects contribute to insulin resistance and to the development of diabetes.
Journal of Clinical Investigation | 2010
Maria D’Apolito; Xueliang Du; Haihong Zong; Alessandra Catucci; Luigi Maiuri; Tiziana Trivisano; Massimo Pettoello-Mantovani; Angelo Campanozzi; Valeria Raia; Jeffrey E. Pessin; Michael Brownlee; Ida Giardino
Although supraphysiological concentrations of urea are known to increase oxidative stress in cultured cells, it is generally thought that the elevated levels of urea in chronic renal failure patients have negligible toxicity. We previously demonstrated that ROS increase intracellular protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc), and others showed that increased modification of insulin signaling molecules by O-GlcNAc reduces insulin signal transduction. Because both oxidative stress and insulin resistance have been observed in patients with end-stage renal disease, we sought to determine the role of urea in these phenotypes. Treatment of 3T3-L1 adipocytes with urea at disease-relevant concentrations induced ROS production, caused insulin resistance, increased expression of adipokines retinol binding protein 4 (RBP4) and resistin, and increased O-GlcNAc-modified insulin signaling molecules. Investigation of a mouse model of surgically induced renal failure (uremic mice) revealed increased ROS production, modification of insulin signaling molecules by O-GlcNAc, and increased expression of RBP4 and resistin in visceral adipose tissue. Uremic mice also displayed insulin resistance and glucose intolerance, and treatment with an antioxidant SOD/catalase mimetic normalized these defects. The SOD/catalase mimetic treatment also prevented the development of insulin resistance in normal mice after urea infusion. These data suggest that therapeutic targeting of urea-induced ROS may help reduce the high morbidity and mortality caused by end-stage renal disease.
Nature | 2017
Ioanna Mosialou; Steven Shikhel; Jian Min Liu; Antonio Maurizi; Na Luo; Zhenyan He; Yiru Huang; Haihong Zong; Richard A. Friedman; Jonathan Barasch; Patricia Lanzano; Liyong Deng; Rudolph L. Leibel; Mishaela R. Rubin; Thomas Nicholas; Wendy K. Chung; Lori M. Zeltser; Kevin W. Williams; Jeffrey E. Pessin; Stavroula Kousteni
Bone has recently emerged as a pleiotropic endocrine organ that secretes at least two hormones, FGF23 and osteocalcin, which regulate kidney function and glucose homeostasis, respectively. These findings have raised the question of whether other bone-derived hormones exist and what their potential functions are. Here we identify, through molecular and genetic analyses in mice, lipocalin 2 (LCN2) as an osteoblast-enriched, secreted protein. Loss- and gain-of-function experiments in mice demonstrate that osteoblast-derived LCN2 maintains glucose homeostasis by inducing insulin secretion and improves glucose tolerance and insulin sensitivity. In addition, osteoblast-derived LCN2 inhibits food intake. LCN2 crosses the blood–brain barrier, binds to the melanocortin 4 receptor (MC4R) in the paraventricular and ventromedial neurons of the hypothalamus and activates an MC4R-dependent anorexigenic (appetite-suppressing) pathway. These results identify LCN2 as a bone-derived hormone with metabolic regulatory effects, which suppresses appetite in a MC4R-dependent manner, and show that the control of appetite is an endocrine function of bone.
Diabetes | 2011
Daorong Feng; Yan Tang; Hyokjoon Kwon; Haihong Zong; Meredith Hawkins; Richard N. Kitsis; Jeffrey E. Pessin
OBJECTIVE Previous studies have demonstrated that mice fed a high-fat diet (HFD) develop insulin resistance with proinflammatory macrophage infiltration into white adipose tissue. Concomitantly, adipocytes undergo programmed cell death with the loss of the adipocyte-specific lipid droplet protein perilipin, and the dead/dying adipocytes are surrounded by macrophages that are organized into crown-like structures. This study investigated whether adipocyte cell death provides the driving signal for macrophage inflammation or if inflammation induces adipocyte cell death. RESEARCH DESIGN AND METHODS Two knockout mouse models were used: granulocyte/monocyte-colony stimulating factor (GM-CSF)–null mice that are protected against HFD-induced adipose tissue inflammation and cyclophilin D (CyP-D)–null mice that are protected against adipocyte cell death. Mice were fed for 4–14 weeks with a 60% HFD, and different markers of cell death and inflammation were analyzed. RESULTS HFD induced a normal extent of adipocyte cell death in GM-CSF–null mice, despite a marked reduction in adipose tissue inflammation. Similarly, depletion of macrophages by clodronate treatment prevented HFD-induced adipose tissue inflammation without any affect on adipocyte cell death. However, CyP-D deficiency strongly protected adipocytes from HFD-induced cell death, without affecting adipose tissue inflammation. CONCLUSIONS These data demonstrate that HFD-induced adipocyte cell death is an intrinsic cellular response that is CyP-D dependent but is independent of macrophage infiltration/activation.
American Journal of Physiology-endocrinology and Metabolism | 2012
Haihong Zong; Michal Armoni; Chava Harel; Eddy Karnieli; Jeffrey E. Pessin
Here, we examined the chronic effects of two cannabinoid receptor-1 (CB1) inverse agonists, rimonabant and ibipinabant, in hyperinsulinemic Zucker rats to determine their chronic effects on insulinemia. Rimonabant and ibipinabant (10 mg·kg⁻¹·day⁻¹) elicited body weight-independent improvements in insulinemia and glycemia during 10 wk of chronic treatment. To elucidate the mechanism of insulin lowering, acute in vivo and in vitro studies were then performed. Surprisingly, chronic treatment was not required for insulin lowering. In acute in vivo and in vitro studies, the CB1 inverse agonists exhibited acute K channel opener (KCO; e.g., diazoxide and NN414)-like effects on glucose tolerance and glucose-stimulated insulin secretion (GSIS) with approximately fivefold better potency than diazoxide. Followup studies implied that these effects were inconsistent with a CB1-mediated mechanism. Thus effects of several CB1 agonists, inverse agonists, and distomers during GTTs or GSIS studies using perifused rat islets were unpredictable from their known CB1 activities. In vivo rimonabant and ibipinabant caused glucose intolerance in CB1 but not SUR1-KO mice. Electrophysiological studies indicated that, compared with diazoxide, 3 μM rimonabant and ibipinabant are partial agonists for K channel opening. Partial agonism was consistent with data from radioligand binding assays designed to detect SUR1 K(ATP) KCOs where rimonabant and ibipinabant allosterically regulated ³H-glibenclamide-specific binding in the presence of MgATP, as did diazoxide and NN414. Our findings indicate that some CB1 ligands may directly bind and allosterically regulate Kir6.2/SUR1 K(ATP) channels like other KCOs. This mechanism appears to be compatible with and may contribute to their acute and chronic effects on GSIS and insulinemia.Conventional (whole body) CYP2E1 knockout mice displayed protection against high-fat diet-induced weight gain, obesity, and hyperlipidemia with increased energy expenditure despite normal food intake and spontaneous locomotor activity. In addition, the CYP2E1 knockout mice displayed a marked improvement in glucose tolerance on both normal chow and high-fat diets. Euglycemic-hyperinsulinemic clamps demonstrated a marked protection against high-fat diet-induced insulin resistance in CYP2E1 knockout mice, with enhanced adipose tissue glucose uptake and insulin suppression of hepatic glucose output. In parallel, adipose tissue was protected against high-fat diet-induced proinflammatory cytokine production. Taken together, these data demonstrate that the CYP2E1 deletion protects mice against high-fat diet-induced insulin resistance with improved glucose homeostasis in vivo.
Annals of Medicine | 2009
Qin Sun; Ling Li; Renzhe Li; Mengliu Yang; Hua Liu; Michael J. Nowicki; Haihong Zong; Jun Xu; Gangyi Yang
Background. Visfatin/PBEF/Nampt is an adipose-derived hormone proposed to exert insulin-mimicking effects and play a positive role in attenuating insulin resistance. However, the precise mechanisms underlying the beneficial effects of visfatin/PBEF/Nampt on insulin sensitivity remain unknown. Method. Euglycemic-hyperinsulinemic clamps were used in the same groups of rats to study the in vivo effect of visfatin/PBEF/Nampt on insulin sensitivity and glucose/lipid metabolism before and after the overexpression of visfatin/PBEF/Nampt protein, which was carried out by injection of pcDNA3.1-visfatin plasmid. Results. On day 4 after plasmid injection, plasma visfatin/PBEF/Nampt protein levels were significantly increased and displayed a hypocholesterolemic effect in both normal-chow (NC) and high-fat diet (HT) animals with pcDNA3.1-visfatin treatment. A second glucose clamp also demonstrated increased insulin sensitivity in pcDNA3.1-visfatin animals. Consistent with the clamp data, the extent of insulin receptor substrate (IRS)-1 tyrosine phosphorylation in response to insulin was significantly enhanced in the liver and adipose tissues. In addition, the mRNA expression of peroxisome proliferator-activated receptor-γ (PPARγ) and sterol regulatory element-binding proteins 2 (SREBP-2) in the liver and adipose tissues was also significantly upregulated in these animals. Conclusion. These results demonstrate that visfatin/PBEF/Nampt improves insulin sensitivity and exerts its hypocholesterolemic effects at least partially through upregulation of the tyrosine phosphorylation of IRS-1 protein and the mRNA levels of PPARγ and SREBP-2.
Cell Metabolism | 2017
Gelsomina Mansueto; Andrea Armani; Carlo Viscomi; Luca D’Orsi; Rossella De Cegli; Elena V. Polishchuk; Costanza Lamperti; Ivano Di Meo; Vanina Romanello; Silvia Marchet; Pradip K. Saha; Haihong Zong; Bert Blaauw; Francesca Solagna; Caterina Tezze; Paolo Grumati; Paolo Bonaldo; Jeffrey E. Pessin; Massimo Zeviani; Marco Sandri; Andrea Ballabio
Summary The transcription factor EB (TFEB) is an essential component of lysosomal biogenesis and autophagy for the adaptive response to food deprivation. To address the physiological function of TFEB in skeletal muscle, we have used muscle-specific gain- and loss-of-function approaches. Here, we show that TFEB controls metabolic flexibility in muscle during exercise and that this action is independent of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Indeed, TFEB translocates into the myonuclei during physical activity and regulates glucose uptake and glycogen content by controlling expression of glucose transporters, glycolytic enzymes, and pathways related to glucose homeostasis. In addition, TFEB induces the expression of genes involved in mitochondrial biogenesis, fatty acid oxidation, and oxidative phosphorylation. This coordinated action optimizes mitochondrial substrate utilization, thus enhancing ATP production and exercise capacity. These findings identify TFEB as a critical mediator of the beneficial effects of exercise on metabolism.
EMBO Reports | 2013
Nuria Martinez-Lopez; Diana Athonvarangkul; Srabani Sahu; Luisa Coletto; Haihong Zong; Claire C. Bastie; Jeffrey E. Pessin; Gary J. Schwartz; Rajat Singh
Macroautophagy (MA) regulates cellular quality control and energy balance. For example, loss of MA in aP2‐positive adipocytes converts white adipose tissue (WAT) into brown adipose tissue (BAT)‐like, enhancing BAT function and thereby insulin sensitivity. However, whether MA regulates early BAT development is unknown. We report that deleting Atg7 in myogenic Myf5+ progenitors inhibits MA in Myf5‐cell‐derived BAT and muscle. Knock out (KO) mice have defective BAT differentiation and function. Surprisingly, their body temperature is higher due to WAT lipolysis‐driven increases in fatty acid oxidation in ‘Beige’ cells in inguinal WAT, BAT and muscle. KO mice also present impaired muscle differentiation, reduced muscle mass and glucose intolerance. Our studies show that ATG7 in Myf5+ progenitors is required to maintain energy and glucose homeostasis through effects on BAT and muscle development. Decreased MA in myogenic progenitors with age and/or overnutrition might contribute to the metabolic defects and sarcopenia observed in these conditions.
Journal of Biological Chemistry | 2009
Haihong Zong; Claire C. Bastie; Jun Xu; Reinhard Fässler; Kevin P. Campbell; Irwin J. Kurland; Jeffrey E. Pessin
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin β1 subunit in striated muscle results in a near complete loss of integrin β1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin β1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR·Rictor·LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin β1 signaling events in mediating cross-talk to that of insulin action.