Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haijun Wu is active.

Publication


Featured researches published by Haijun Wu.


Nature Communications | 2014

Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3.

Haijun Wu; Li-Dong Zhao; Fengshan Zheng; Di Wu; Yanling Pei; X. Tong; Mercouri G. Kanatzidis; Jiaqing He

Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. The efficiency of thermoelectric materials depends directly on the average ZT (dimensionless figure of merit) over a certain temperature range, which historically has been challenging to increase. Here we report that 2.5% K-doped PbTe0.7S0.3 achieves a ZT of >2 for a very wide temperature range from 673 to 923 K and has a record high average ZT of 1.56 (corresponding to a theoretical energy conversion efficiency of ~20.7% at the temperature gradient from 300 to 900 K). The PbTe0.7S0.3 composition shows spinodal decomposition with large PbTe-rich and PbS-rich regions where each region exhibits dissimilar types of nanostructures. Such high average ZT is obtained by synergistically optimized electrical- and thermal-transport properties via carrier concentration tuning, band structure engineering and hierarchical architecturing, and highlights a realistic prospect of wide applications of thermoelectrics.


Energy and Environmental Science | 2013

Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides

Jiehe Sui; Jing Li; Jiaqing He; Yanling Pei; David Berardan; Haijun Wu; Nita Dragoe; Wei Cai; Li-Dong Zhao

We present a high ZT ∼ 1.4 in textured Bi0.875Ba0.125CuSeO obtained by a hot-forging process. The carrier mobility along the direction perpendicular to the pressing direction was significantly increased, resulting in increase in the electrical conductivity and maximization of the power factor at 923 K from 6.3 μW cm−1 K−2 for the sample before hot-forging to 8.1 μW cm−1 K−2 after the hot-forging process. Therefore, the maximum ZT was significantly increased from ∼1.1 to 1.4 through texturing for Bi0.875Ba0.125CuSeO, which is the highest ZT ever reported among oxygen containing materials.


Journal of the American Chemical Society | 2014

High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping

Yanling Pei; Haijun Wu; Di Wu; Fengshan Zheng; Jiaqing He

We report a greatly enhanced thermoelectric performance in a BiCuSeO system, realized by improving carrier mobility through modulation doping. The heterostructures of the modulation doped sample make charge carriers transport preferentially in the low carrier concentration area, which increases carrier mobility by a factor of 2 while maintaining the carrier concentration similar to that in the uniformly doped sample. The improved electrical conductivity and retained Seebeck coefficient synergistically lead to a broad, high power factor ranging from 5 to 10 μW cm(-1) K(-2). Coupling the extraordinarily high power factor with the extremely low thermal conductivity of ∼0.25 W m(-1) K(-1) at 923 K, a high ZT ≈ 1.4 is achieved in a BiCuSeO system.


Journal of the American Chemical Society | 2014

Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3 Doping

Di Wu; Li-Dong Zhao; Shiqiang Hao; Qike Jiang; Fengshan Zheng; Jeff W. Doak; Haijun Wu; Hang Chi; Yaniv Gelbstein; C. Uher; C. Wolverton; Mercouri G. Kanatzidis; Jiaqing He

As a lead-free material, GeTe has drawn growing attention in thermoelectrics, and a figure of merit (ZT) close to unity was previously obtained via traditional doping/alloying, largely through hole carrier concentration tuning. In this report, we show that a remarkably high ZT of ∼1.9 can be achieved at 773 K in Ge0.87Pb0.13Te upon the introduction of 3 mol % Bi2Te3. Bismuth telluride promotes the solubility of PbTe in the GeTe matrix, thus leading to a significantly reduced thermal conductivity. At the same time, it enhances the thermopower by activating a much higher fraction of charge transport from the highly degenerate Σ valence band, as evidenced by density functional theory calculations. These mechanisms are incorporated and discussed in a three-band (L + Σ + C) model and are found to explain the experimental results well. Analysis of the detailed microstructure (including rhombohedral twin structures) in Ge0.87Pb0.13Te + 3 mol % Bi2Te3 was carried out using transmission electron microscopy and crystallographic group theory. The complex microstructure explains the reduced lattice thermal conductivity and electrical conductivity as well.


Energy and Environmental Science | 2017

The structural origin of enhanced piezoelectric performance and stability in lead free ceramics

Ting Zheng; Haijun Wu; Yuan Yuan; Xiang Lv; Qi Li; Tian-Lu Men; Chunlin Zhao; Dingquan Xiao; Jiagang Wu; Ke Wang; Jing-Feng Li; Yueliang Gu; Jianguo Zhu; Stephen J. Pennycook

Lead-based piezoelectric materials are currently facing global restrictions due to their lead toxicity. Thus it is urgent to develop lead-free substitutes with high piezoelectricity and temperature stability, among which, potassium-sodium niobate [(K,Na)NbO3, KNN] has the most potential. It is very difficult to simultaneously achieve high piezoelectric performance and reliable stability in KNN-based systems. In particular, the structural/physical origin for their high piezoelectricity is still unclear, which hinders property optimization. Here we report the achievement of high temperature stability (less than 10% variation for electric field-induced strain from 27 °C to 80 °C), good fatigue properties (stable up to 106 cycles) as well as an enhanced piezoelectric coefficient (d33) of 525 pC N−1 in (1 − x)(K1−yNay)(Nb1−zSbz)O3–xBi0.5(Na1−wKw)0.5HfO3 (KNNS–BNKH) ceramics through manipulating the rhombohedral–tetragonal (R–T) phase boundary. The structural origin of their high piezoelectric performance can be attributed to a hierarchical nanodomain architecture, where the local structure inside nanodomains comprises R and T nanotwins. The physical origin can be attributed to low domain wall energy and nearly vanishing polarization anisotropy, facilitating easy polarization rotation among different states. We believe that the new breakthrough will open a window for the practical applications of KNN-based ceramics.


Journal of the American Chemical Society | 2016

Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe

Li-Dong Zhao; Xiao Zhang; Haijun Wu; Gangjian Tan; Yanling Pei; Yu Xiao; Cheng Chang; Di Wu; Hang Chi; Lei Zheng; Shengkai Gong; Ctirad Uher; Jiaqing He; Mercouri G. Kanatzidis

We report enhanced thermoelectric performance in SnTe, where significantly improved electrical transport properties and reduced thermal conductivity were achieved simultaneously. The former was obtained from a larger hole Seebeck coefficient through Fermi level tuning by optimizing the carrier concentration with Ga, In, Bi, and Sb dopants, resulting in a power factor of 21 μW cm(-1) K(-2) and ZT of 0.9 at 823 K in Sn(0.97)Bi(0.03)Te. To reduce the lattice thermal conductivity without deteriorating the hole carrier mobility in Sn(0.97)Bi(0.03)Te, SrTe was chosen as the second phase to create strained endotaxial nanostructures as phonon scattering centers. As a result, the lattice thermal conductivity decreases strongly from ∼2.0 Wm(-1) K(-1) for Sn(0.97)Bi(0.03)Te to ∼1.2 Wm(-1) K(-1) as the SrTe content is increased from 0 to 5.0% at room temperature and from ∼1.1 to ∼0.70 Wm(-1) K(-1) at 823 K. For the Sn(0.97)Bi(0.03)Te-3% SrTe sample, this leads to a ZT of 1.2 at 823 K and a high average ZT (for SnTe) of 0.7 in the temperature range of 300-823 K, suggesting that SnTe is a robust candidate for medium-temperature thermoelectric applications.


Journal of the American Chemical Society | 2013

Role of Sodium Doping in Lead Chalcogenide Thermoelectrics

Jiaqing He; Li-Dong Zhao; Jin-Cheng Zheng; Jeff W. Doak; Haijun Wu; Hui Qiong Wang; Yeseul Lee; C. Wolverton; Mercouri G. Kanatzidis; Vinayak P. Dravid

The solubility of sodium and its effects on phonon scattering in lead chalcogenide PbQ (Q = Te, Se, S) family of thermoelectric materials was investigated by means of transmission electron microscopy and density functional calculations. Among these three systems, Na has the highest solubility limit (~2 mol %) in PbS and the lowest ~0.5 mol %) in PbTe. First-principles electronic structure calculations support the observations, indicating that Na defects have the lowest formation energy in PbS and the highest in PbTe. It was also found that in addition to providing charge carriers (holes) for PbQ, Na introduces point defects (solid solution formation) and nanoscale precipitates; both reduce the lattice thermal conductivity by scattering heat-carrying phonons. These results explain the recent reports of high thermoelectric performance in p-type PbQ materials and may lead to further advances in this class of materials.


Energy and Environmental Science | 2015

Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe

Haijun Wu; Cheng Chang; Dan Feng; Yu Xiao; Xiao Zhang; Yanling Pei; Lei Zheng; Di Wu; Shengkai Gong; Yue Chen; Jiaqing He; Mercouri G. Kanatzidis; Li-Dong Zhao

Lead chalcogenides are the most efficient thermoelectric materials. In comparison, SnTe, a lead-free analogue of PbTe, exhibits inferior thermoelectric performance due to low Seebeck coefficient and high thermal conductivity. In this report, we show that we can synergistically optimize the electrical and thermal transport properties of SnTe via alloying Mn. We report that the introduction of Mn (0–50%) induces multiple effects on the band structure and microstructure of SnTe: for the former, it can tune the Fermi level and promote the convergence of the two valence bands, concurrently enhancing the Seebeck coefficient; for the latter, it can profoundly modify the microstructure into an all-scale hierarchical architecture (including nanoscale precipitates/MnTe laminates, stacking faults, layered structure, atomic-scale point defects, etc.) to scatter phonons with a broad range of mean free paths, strongly reducing the lattice thermal conductivity. Meanwhile, most significantly, the Mn alloying enlarges the energy gap of the conduction band (C band) and the light valence band (L band), thereby suppressing the bipolar thermal conductivity by increasing the band gap. The integration of these effects yields a high ZT of 1.3 at 900 K for 17% Mn alloyed SnTe.


Advanced Science | 2016

Enhancing the Figure of Merit of Heavy‐Band Thermoelectric Materials Through Hierarchical Phonon Scattering

Chenguang Fu; Haijun Wu; Yintu Liu; Jiaqing He; Xinbing Zhao; Tiejun Zhu

Hierarchical scattering is suggested as an effective strategy to enhance the figure of merit zT of heavy‐band thermoelectric materials. Heavy‐band FeNbSb half‐Heusler system with intrinsically low carrier mean free path is demonstrated as a paradigm. An enhanced zT of 1.34 is obtained at 1150 K for the Fe1.05Nb0.75Ti0.25Sb compound with intentionally designed hierarchical scattering centers.


Nanoscale Horizons | 2017

Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting

Cao Guan; Ximeng Liu; Abdelnaby M. Elshahawy; Hong Zhang; Haijun Wu; Stephen J. Pennycook; John Wang

Self-supported hollow nanoarrays with hierarchical pores and rich reaction sites are promising for advanced electrocatalysis. Herein, we report a rational design of novel CoS2 nanotube arrays assembled on a flexible support which can be directly utilized as an efficient bifunctional electrocatalyst for overall water splitting. Uniform wire-like metal-organic framework (MOF) nanoarrays were first fabricated and a sulfidation process by thermal treatment was carried out to transform the MOF arrays into CoS2 nanotube arrays. The unique hollow CoS2 tubular arrays are shown to provide high surface area for an efficient electrochemical reaction, and the well-defined electrical/mechanical connection to the substrate enhances both mass and electron transfer. The CoS2 nanotube arrays exhibited a high electrochemical activity in catalyzing both oxygen and hydrogen evolution reactions, in terms of low onset potential, high current density and excellent stability. Using the CoS2 nanotube arrays as catalysts, a water-splitting current density of 10 mA cm-2 in alkaline solution is achieved with a cell voltage of 1.67 V, and the stable current can be maintained for 20 h even when the electrode is in a bent state.

Collaboration


Dive into the Haijun Wu's collaboration.

Top Co-Authors

Avatar

Stephen J. Pennycook

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jiaqing He

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Di Wu

South University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

John Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Cao Guan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yang Zhang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge