Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haikun Zhao is active.

Publication


Featured researches published by Haikun Zhao.


Journal of Climate | 2012

Dynamically Derived Tropical Cyclone Intensity Changes over the Western North Pacific

Liguang Wu; Haikun Zhao

AbstractThe study of the impact of global warming on tropical cyclone (TC) intensity is subject to uncertainty in historical datasets, especially in the western North Pacific (WNP) basin, where conflicting results have been found with the TC datasets archived in different organizations. In this study the basinwide TC intensity in the WNP basin is derived dynamically with a TC intensity model, based on the track data from the Joint Typhoon Warning Center (JTWC), the Regional Specialized Meteorological Center (RSMC) of Tokyo, and the Shanghai Typhoon Institute (STI) of the China Meteorological Administration. The dynamically derived TC intensity is compared to the three datasets and used to investigate trends in TC intensity. The associated contributions of changes in SST, vertical wind shear, and prevailing tracks are also examined. The evolution of the basinwide TC intensity in the JTWC best-track dataset can be generally reproduced over the period 1975–2007. Dynamically derived data based on the JTWC, RS...


Advances in Atmospheric Sciences | 2014

Decadal variations of intense tropical cyclones over the western North Pacific during 1948–2010

Haikun Zhao; Liguang Wu; Ruifang Wang

Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948–2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12–18 years) variability, while the interdecadal (18–32 years) variability was found to be statistically insignificant.Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations.


Meteorology and Atmospheric Physics | 2014

Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study

Haikun Zhao; Liguang Wu

On the basis of observations and results from the combination of a statistical formation model and a trajectory model, the inter-decadal shift of prevailing TC tracks in the western North Pacific (WNP) are examined. The contributions of the changes in large-scale steering flows and tropical cyclone (TC) formation locations to the observed inter-decadal shift are investigated and their relative importance is determined. This study focuses on two periods, 1965–1986 (ID1) and 1987–2010 (ID2), which are determined based on the abrupt change of the annual category 4 and 5 TC frequency derived from the Bayesian change-point detection analysis. It is found that the models can well simulate the primary features of prevailing TC tracks on the inter-decadal timescale. From ID1 to ID2, a significant decrease in the frequency of TC occurrences is observed over the central South China Sea and well simulated by the models. Areas with a remarkable increase in the TC frequency, which extends from the Philippine Sea to the eastern coast of China and in the west of the WNP basin, are also reasonably simulated. Above changes in the prevailing TC tracks are attributed to (1) intensified cyclonic circulation centered over the western part of China and (2) more westward-southward expansion and intensification of the subtropical high over the WNP. Further analysis reveals that the inter-decadal shift in prevailing TC tracks is mainly resulted from the combined effects of changes in large-scale steering flows and TC formation locations. Although both contribute to the inter-decadal shift in the prevailing TC tracks, changes in large-scale steering flows play a more important role compared to changes in TC formation locations.


Climate Dynamics | 2016

Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific

Haikun Zhao; Chunzai Wang

The present study identifies an interdecadal modulation of the Pacific decadal oscillation (PDO) on the relationship between El Niño-Southern oscillation (ENSO) and typhoon activity during the late season (October–December) in the western North Pacific. The PDO is uncorrelated with ENSO during the warm phase of 1979–1997, while the PDO is positively correlated with ENSO during the cold phase of 1998–2012. Further analyses show that the warm phase is associated with the reduced ENSO–typhoon activity relationship and more typhoons, whereas the cold phase is corresponded to the enhanced ENSO–typhoon activity relationship and fewer typhoons. These variations are mainly manifested by a significant difference of typhoon activity in the southeastern part of the western North Pacific. Moreover, the change of ENSO–typhoon relationship is largely due to changes in large-scale environmental conditions especially from low-level vorticity and vertical wind shear between the two phases, which are related to the changes in tropical Indo-Pacific sea surface temperature. The study implies that the phase of the PDO should be taken into account when ENSO is used as a predictor for predicting typhoon activity in the western North Pacific.


Journal of Applied Meteorology and Climatology | 2015

Impact of the Madden–Julian Oscillation on Western North Pacific Tropical Cyclogenesis Associated with Large-Scale Patterns

Haikun Zhao; Ryuji Yoshida; G. B. Raga

AbstractThe intraseasonal variability of tropical cyclogenesis in the western North Pacific (WNP) basin is explored in this study. The relation of cyclogenesis in each of the five large-scale patterns identified in recent work by Yoshida and Ishikawa is associated with the Madden–Julian oscillation (MJO). Confirming previous results, more events of cyclogenesis are found during the active MJO phase in the WNP. Furthermore, results indicate that most of the tropical cyclogenesis is associated with the monsoon shear line large-scale pattern during the active phase. The genesis potential index (GPI) and its individual components are used to evaluate the environmental factors that most contribute toward cyclogenesis under the different phases of the MJO. GPI exhibits a large positive anomaly during the active phase of the MJO, and such an anomaly is spatially correlated with the events of cyclogenesis. The analysis of each factor indicates that low-level relative vorticity and midlevel relative humidity are t...


Journal of Climate | 2016

Boreal Summer Synoptic-Scale Waves over the Western North Pacific in Multimodel Simulations

Haikun Zhao; Xianan Jiang; Liguang Wu

AbstractDuring boreal summer, vigorous synoptic-scale wave (SSW) activity, often evident as southeast–northwest-oriented wave trains, prevails over the western North Pacific (WNP). In spite of their active role for regional weather and climate, modeling studies on SSWs are rather limited. In this study, a comprehensive survey on climate model capability in representing the WNP SSWs is conducted by analyzing simulations from 27 recent general circulation models (GCMs). Results suggest that it is challenging for GCMs to realistically represent the observed SSWs. Only 2 models out of the 27 GCMs generally well simulate both the intensity and spatial pattern of the observed SSW mode. Plausible key processes for realistic simulations of SSW activity are further explored. It is illustrated that GCM skill in representing the spatial pattern of the SSW is highly correlated to its skill in simulating the summer mean patterns of the low-level convergence associated with the WNP monsoon trough and conversion from ed...


Advances in Atmospheric Sciences | 2016

Modulation of Tropical Cyclogenesis in the Western North Pacific by the Quasi-Biweekly Oscillation

Haikun Zhao; Chunzai Wang; Ryuji Yoshida

The quasi-biweekly oscillation (QBWO) is the second most dominant intraseasonal mode over the western North Pacific (WNP) during boreal summer. In this study, the modulation of WNP tropical cyclogenesis (TCG) by the QBWO and its association with large-scale patterns are investigated. A strong modulation of WNP TCG events by the QBWO is found. More TCG events occur during the QBWO’s convectively active phase. Based on the genesis potential index (GPI), we further evaluate the role of environmental factors in affecting WNP TCG. The positive GPI anomalies associated with the QBWO correspond well with TCG counts and locations. A large positive GPI anomaly is spatially correlated with WNP TCG events during a life cycle of the QBWO. The low-level relative vorticity and mid-level relative humidity appear to be two dominant contributors to the QBWO-composited GPI anomalies during the QBWO’s active phase, followed by the nonlinear and potential intensity terms. These positive contributions to the GPI anomalies are partly offset by the negative contribution from the vertical wind shear. During the QBWO’s inactive phase, the mid-level relative humidity appears to be the largest contributor, while weak contributions are also made by the nonlinear and low-level relative vorticity terms. Meanwhile, these positive contributions are partly cancelled out by the negative contribution from the potential intensity. The contributions of these environmental factors to the GPI anomalies associated with the QBWO are similar in all five flow patterns—the monsoon shear line, monsoon confluence region, monsoon gyre, easterly wave, and Rossby wave energy dispersion associated with a preexisting TC. Further analyses show that the QBWO strongly modulates the synoptic-scale wave trains (SSWs) over the WNP, with larger amplitude SSWs during the QBWO’s active phase. This implies a possible enhanced (weakened) relationship between TCG and SSWs during the active (inactive) phase. This study improves our understanding of the modulation of WNP TCG by the QBWO and thus helps with efforts to improve the intraseasonal prediction of WNP TCG.


Climate Dynamics | 2018

On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer

Haikun Zhao; Chunzai Wang

The present paper uses the satellite era data from 1979 to 2015 to examine the relationship between El Niño-Southern Oscillation (ENSO) and tropical cyclones (TCs) in the western North Pacific (WNP) during the boreal summer from June to August. It is found that WNP TC variability is characterized by two major feature changes: (1) a significant reduction of the TC number since 1998 and (2) a stronger interannual relationship between ENSO and TCs since 1998. Results suggested that such changes are largely due to the synergy effects of a shifting ENSO and the Pacific climate regime shift. Since 1998 with a cool Pacific decadal oscillation phase switching from a warm phase, more La Niña and central Pacific (CP) El Niño events occur. The decreased low-level relative vorticity and increased vertical wind shear during 1998–2015 compared to 1979–1997 are responsible for the TC reduction. The stronger interannual relationship between ENSO and TCs since 1998 is closely associated the change of CP sea surface temperature. It enhances the associations of environmental factors including vertical wind shear and mid-level relative humidity with TCs and thus increases the interannual relationship between ENSO and TCs. These two feature changes also manifest in the mean TC genesis location, with a northwestward shift of the TC genesis location during 1998–2015 and an increased relation to El Niño Modoki index since 1998. This study has an important implication for TC outlooks in the WNP based on climate predictions and projections.


Journal of Climate | 2017

Potential Large-Scale Forcing Mechanisms Driving Enhanced North Atlantic Tropical Cyclone Activity since the Mid-1990s

Haikun Zhao; Xingyi Duan; Graciela B. Raga; Fengpeng Sun

AbstractA significant increase of tropical cyclone (TC) frequency is observed over the North Atlantic (NATL) basin during the recent decades (1995–2014). In this study, the changes in large-scale controls of the NATL TC activity are compared between two periods, one before and one since 1995, when a regime change is observed. The results herein suggest that the significantly enhanced NATL TC frequency is related mainly to the combined effect of changes in the magnitudes of large-scale atmospheric and oceanic factors and their association with TC frequency. Interdecadal changes in the role of vertical wind shear and local sea surface temperatures (SSTs) over the NATL appear to be two important contributors to the recent increase of NATL TC frequency. Low-level vorticity plays a relatively weak role in the recent increase of TC frequency. These changes in the role of large-scale factors largely depend on interdecadal changes of tropical SST anomalies (SSTAs). Enhanced low-level westerlies to the east of the...


Atmosfera | 2015

ON THE DISTINCT INTERANNUAL VARIABILITY OF TROPICAL CYCLONE ACTIVITY OVER THE EASTERN NORTH PACIFIC

Haikun Zhao; Graciela B. Raga

The tropical eastern North Pacific (ENP) basin exhibits very large interannual variability in the frequency of occurrence of tropical cyclones, presenting very active (more than 20 tropical cyclones per season) and very inactive years (only eigth tropical cyclones). The large-scale factors that may influence the distinct interannual variability are investigated in this study, by analyzing the composites of seven years of high activity and 10 years of low activity from 1965 to 2013. The results of composite analyses indicate that the low-level vorticity and mid-tropospheric relative humidity are mostly unfavorable for tropical cyclogenesis during active years. The sea surface temperature (SST) may play a small role modulating the occurrence of tropical cyclones, but the reduced vertical shear of the horizontal wind between 850 and 200 hPa is the main contributor to cyclogenesis during the active years, confirming earlier results by Camargo et al. (2007). We use an intensity model (Emanuel et al. , 2006, 2008) to further investigate the key environmental factors affecting TC intensity, exploring the relative roles of changes in SST, vertical wind shear and TC tracks. The results indicate that the interannual variability in the frequency of major hurricanes (categories 3 through 5) is best simulated when the effects of both SST and vertical wind shear are combined. Furthermore, changes in TC tracks may play an important role in the intensity achieved. In particular, during the years with high activity, the location for cyclogenesis shifts eastward and more TCs have west-northwestward tracks, leading to longer lifetime and higher intensity, compared to years with low TC activity in the basin.

Collaboration


Dive into the Haikun Zhao's collaboration.

Top Co-Authors

Avatar

Liguang Wu

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Graciela B. Raga

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weican Zhou

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xianan Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Shaohua Chen

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xingyi Duan

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chunzai Wang

Atlantic Oceanographic and Meteorological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chao Wang

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chunzai Wang

Atlantic Oceanographic and Meteorological Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge