Hailei Wang
Henan Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hailei Wang.
Bioresource Technology | 2016
Yi Li; Yanting Xu; Lei Liu; Xiaobing Jiang; Kun Zhang; Tianling Zheng; Hailei Wang
Bioflocculant from Shinella albus xn-1 could be used to harvest energy-producing microalga Chlorella vulgaris biomass for the first time. In this study, we investigated the flocculation activity and mode of strain xn-1, the characteristics of bioflocculant, the effect of flocculation conditions and optimized the flocculation efficiency. The results indicated that strain xn-1 exhibited flocculation activity through secreting bioflocculant; the bioflocculant with high thermal stability, pH stability and low molecular weight was proved to be not protein and polysaccharide, and flocculation active component was confirmed to contain triple bond and cumulated double bonds; algal pH, temperature and metal ions showed great impacts on the flocculation efficiency of bioflocculant; the maximum flocculation activity of bioflocculant reached 85.65% after the response surface optimization. According to the results, the bioflocculant from S. albus xn-1 could be a good potential in applications for high-efficiency harvesting of microalgae.
Bioresource Technology | 2017
Yi Li; Yanting Xu; Tianling Zheng; Hailei Wang
In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass.
Bioresource Technology | 2018
Yi Li; Yanting Xu; Tianling Zheng; Hailei Wang
The aim of this work was to investigate the flocculation mechanism by Gram-positive bacterium, Micrococcus sp. hsn08 as a means for harvesting Chlorella vulgaris biomass. Bacterial cells of Micrococcus sp. hsn08 were added into algal culture to harvest algal cells through direct contacting with algae to form flocs. Viability dependence test confirmed that flocculation activity does not depend on live bacteria, but on part of the peptidoglycan. The further investigation has determined that amino acids in cell wall play an important role to flocculate algal cells. Positively charged calcium can combine bacterial and algal cells together, and form a bridge between them, thereby forming the flocs, suggesting that ions bridging is the main flocculation mechanism. These results suggest that bacterial cells of Micrococcus sp. hsn08 can be applied to harvest microalgae biomass with the help of amino acids in cell wall.
International Journal of Food Microbiology | 2017
Xiaobing Jiang; Yameng Xu; Yi Li; Kun Zhang; Lei Liu; Hailei Wang; Jinhe Tian; Hao Ying; Lei Shi; Tao Yu
The aim of this study was to examine the presence of genes responsible for resistance to quaternary ammonium compounds (QACs) and the association of qac genes with class 1 integrons in Escherichia coli isolated from retail meats. Among the 179 E. coli isolates tested, the minimum inhibitory concentrations (MICs) of benzalkonium chloride (BC) ranged from 4 to 64μg/mL. PCR assays indicated that QAC-resistance genes sugE(c), ydgE/ydgF, mdfA, emrE and qacEΔ1 were commonly present (40.2%-88.3%) in these isolates, but qacE, qacF, qacH and sugE(p) were less prevalent (2.2%-28.5%). Seven different gene cassette arrangements were identified in 31 intI1-positive isolates. Three types of qacH-sul3-associated non-classic integrons were observed in four isolates: dfrA12-orfF-aadA2-cmlA1-aadA1-qacH-IS440-sul3, aadA2-cmlA1-aadA1-qacH-IS440-sul3 and dfrA1-aadA1-qacH-IS440-sul3. Non-classic class 1 integrons were located on plasmids of 100-150kb in these four isolates. Our results demonstrated that the qacH-associated integrons located on 100 kb plasmids in two isolates could be transferred to an E. coli recipient, indicating the co-existence and co-dissemination of disinfectant and antimicrobial resistance genes among bacterial species.
Letters in Applied Microbiology | 2017
Yi Li; Lei Liu; Yanting Xu; Ping Li; Kun Zhang; Xiaobing Jiang; Tianling Zheng; Hailei Wang
Microcystis aeruginosa is a cyanobacterial bloom‐causing species and is considered a serious threat to human health and biological safety. In this study, the algicidal bacterium h10 showed high algicidal effects on M. aeruginosa 7820, and strain h10 was confirmed to belong to the genus Exiguobacterium, for which the name Exiguobacterium sp. h10 is proposed. Algicidal activity and mode analysis revealed that the supernatant, rather than the bacterial cells, was responsible for the algicidal activity, indicating that the algicidal mode of strain h10 is by indirect attack through the production of algicidal substances. Analysis of the algicidal substance characteristics showed a molecular weight of <1000 Da and that algicidal substances exhibit high thermal stability and pH instability, and the characteristic functional groups of the algicidal substance mainly included carbonyl, amino and hydroxyl groups. Under the effects of the algicidal substance, the cellular pigment content was significantly decreased, and the algal cell structure and morphology were seriously damaged. The results indicate that the algicidal bacterium Exiguobacterium sp. h10 could be a potential bio‐agent for controlling cyanobacterial blooms of M. aeruginosa.
Frontiers in Microbiology | 2017
Xiaobing Jiang; Tao Yu; Lei Liu; Yi Li; Kun Zhang; Hailei Wang; Lei Shi
The aim of this study was to examine the presence of genes responsible for resistance to quaternary ammonium compounds (QACs) and the association of qac genes with class 1 integrons in Proteus mirabilis isolated from cooked meat products. A total of 52 P. mirabilis isolates (29.2%) were detected from 178 samples, and their minimum inhibitory concentrations (MICs) of benzalkonium chloride (BC) ranged from 4 to >32 μg/mL. The isolates with BC MICs of 24 μg/mL were observed most frequently. PCR assays indicated that mdfA, ydgE/ydgF, qacE, qacEΔ1, emrE, sugE(c), and sugE(p) were commonly present (32.7%–100%) in these isolates, but qacH was less prevalent (3.8%). Five groups of resistance gene cassettes were identified in 10 intI1-positive isolates. An unusual gene cassette array dfrA32-ereA-aadA2 was found in one foodborne isolate of P. mirabilis. Two isolates harbored qacH- and sul3- associated non-classic integrons: aadA2-cmlA1-aadA1-qacH-IS440-sul3 and a new arrangement dfrA32-ereA1-aadA2-cmlA1-aadA1-qacH-IS440-sul3, which is first reported in P. mirabilis. Non-classic class 1 integrons were located on conjugative plasmids of 100 kb in two tested isolates. Our data showed that the QAC resistance genes were commonly present among P. mirabilis isolates from cooked meats and qacH was associated with non-classic class 1 integrons. The creation of transconjugants demonstrated that qacH-associated non-classic class 1 integrons were located on conjugative plasmids and therefore could facilitate the co-dissemination of disinfectant and antimicrobial resistance genes among bacteria, an increasing area of concern.
Algal Research-Biomass Biofuels and Bioproducts | 2017
Yi Li; Yanting Xu; Lei Liu; Ping Li; Yue Yan; Tong Chen; Tianling Zheng; Hailei Wang
Current Microbiology | 2016
Yi Li; Lei Liu; Yanting Xu; Chengwei Guan; Xueqian Lei; Wei Zheng; Hailei Wang; Tianling Zheng
BMC Biotechnology | 2018
Yi Li; Yanting Xu; Ruixue Song; Congqi Tian; Lei Liu; Tianling Zheng; Hailei Wang
AMB Express | 2018
Hailei Wang; Yi Li; Kun Zhang; Yingqun Ma; Ping Li