Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hailiang Hu is active.

Publication


Featured researches published by Hailiang Hu.


Proceedings of the National Academy of Sciences of the United States of America | 2010

ATM is down-regulated by N-Myc–regulated microRNA-421

Hailiang Hu; Liutao Du; Gindy Nagabayashi; Robert C. Seeger; Richard A. Gatti

Ataxia-telangiectasia mutated (ATM) is a high molecular weight protein serine/threonine kinase that plays a central role in the maintenance of genomic integrity by activating cell cycle checkpoints and promoting repair of DNA double-strand breaks. Little is known about the regulatory mechanisms for ATM expression itself. MicroRNAs are naturally existing regulators that modulate gene expression in a sequence-specific manner. Here, we show that a human microRNA, miR-421, suppresses ATM expression by targeting the 3′-untranslated region (3′UTR) of ATM transcripts. Ectopic expression of miR-421 resulted in S-phase cell cycle checkpoint changes and an increased sensitivity to ionizing radiation, creating a cellular phenotype similar to that of cells derived from ataxia-telangiectasia (A-T) patients. Blocking the interaction between miR-421 and ATM 3′UTR with an antisense morpholino oligonucleotide rescued the defective phenotype caused by miR-421 overexpression, indicating that ATM mediates the effect of miR-421 on cell cycle checkpoint and radiosensitivity. Overexpression of the N-Myc transcription factor, an oncogene frequently amplified in neuroblastoma, induced miR-421 expression, which, in turn, down-regulated ATM expression, establishing a linear signaling pathway that may contribute to N-Myc-induced tumorigenesis in neuroblastoma. Taken together, our findings implicate a previously undescribed regulatory mechanism for ATM expression and ATM-dependent DNA damage response and provide several potential targets for treating neuroblastoma and perhaps A-T.


Journal of Molecular Cell Biology | 2011

MicroRNAs: new players in the DNA damage response

Hailiang Hu; Richard A. Gatti

The DNA damage response (DDR) is a signal transduction pathway that decides the cells fate either to repair DNA damage or to undergo apoptosis if there is too much damage. Post-translational modifications modulate the assembly and activity of protein complexes during the DDR pathways. MicroRNAs (miRNAs) are emerging as a class of endogenous gene modulators that control protein levels, thereby adding a new layer of regulation to the DDR. In this review, we describe a new role for miRNAs in regulating the cellular response to DNA damage with a focus on DNA double-strand break damage. We also discuss the implications of miRNAs role in the DDR to stem cells, including embryonic stem cells and cancer stem cells, stressing the potential applications for miRNAs to be used as sensitizers for cancer radiotherapy and chemotherapy.


Journal of Experimental Medicine | 2009

Nonaminoglycoside compounds induce readthrough of nonsense mutations

Liutao Du; Robert Damoiseaux; Kun Gao; Hailiang Hu; Julianne M. Pollard; Jimena V. Goldstine; Michael E. Jung; Susanne M. Henning; Carmen Bertoni; Richard A. Gatti

Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ∼34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein.


Human Molecular Genetics | 2011

Arginine-rich cell-penetrating peptide dramatically enhances AMO-mediated ATM aberrant splicing correction and enables delivery to brain and cerebellum

Liutao Du; Refik Kayali; Carmen Bertoni; Francesca Fike; Hailiang Hu; Patrick L. Iversen; Richard A. Gatti

Antisense morpholino oligonucleotides (AMOs) can reprogram pre-mRNA splicing by complementary binding to a target site and regulating splice site selection, thereby offering a potential therapeutic tool for genetic disorders. However, the application of this technology into a clinical scenario has been limited by the low correction efficiency in vivo and inability of AMOs to efficiently cross the blood brain barrier and target brain cells when applied to neurogenetic disorders such as ataxia-telangiecatasia (A-T). We previously used AMOs to correct subtypes of ATM splicing mutations in A-T cells; AMOs restored up to 20% of the ATM protein and corrected the A-T cellular phenotype. In this study, we demonstrate that an arginine-rich cell-penetrating peptide, (RXRRBR)(2)XB, dramatically improved ATM splicing correction efficiency when conjugated with AMOs, and almost fully corrected aberrant splicing. The restored ATM protein was close to normal levels in cells with homozygous splicing mutations, and a gene dose effect was observed in cells with heterozygous mutations. A significant amount of the ATM protein was still detected 21 days after a single 5 µm treatment. Systemic administration of an fluorescein isothiocyanate-labeled (RXRRBR)(2)XB-AMO in mice showed efficient uptake in the brain. Fluorescence was evident in Purkinje cells after a single intravenous injection of 60 mg/kg. Furthermore, multiple injections significantly increased uptake in all areas of the brain, notably in cerebellum and Purkinje cells, and showed no apparent signs of toxicity. Taken together, these results highlight the therapeutic potential of (RXRRBR)(2)XB-AMOs in A-T and other neurogenetic disorders.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and evaluation of compounds that induce readthrough of premature termination codons

Michael E. Jung; Jin-Mo Ku; Liutao Du; Hailiang Hu; Richard A. Gatti

A structure-activity relationship (SAR) study was carried out to identify novel, small molecular weight compounds which induce readthrough of premature termination codons. In particular, analogs of RTC13, 1, were evaluated. In addition, hypothesizing that these compounds exhibit their activity by binding to the ribosome, we prepared the hybrid analogs 13 containing pyrimidine bases and these also showed good readthrough activity.


Molecular Therapy | 2013

A New Series of Small Molecular Weight Compounds Induce Read Through of All Three Types of Nonsense Mutations in the ATM Gene

Liutao Du; Michael E. Jung; Robert Damoiseaux; Gladys Completo; Francesca Fike; Jin-Mo Ku; Cijing Piao; Hailiang Hu; Richard A. Gatti

Chemical-induced read through of premature stop codons might be exploited as a potential treatment strategy for genetic disorders caused by nonsense mutations. Despite the promise of this approach, only a few read-through compounds (RTCs) have been discovered to date. These include aminoglycosides (e.g., gentamicin and G418) and nonaminoglycosides (e.g., PTC124 and RTC13). The therapeutic benefits of these RTCs remain to be determined. In an effort to find new RTCs, we screened an additional ~36,000 small molecular weight compounds using a high-throughput screening (HTS) assay that we had previously developed and identified two novel RTCs, GJ071, and GJ072. The activity of these two compounds was confirmed in cells derived from ataxia telangiectasia (A-T) patients with three different types of nonsense mutation in the ATM gene. Both compounds showed activity comparable to stop codons (TGA, TAG, and TAA) PTC124 and RTC13. Early structure-activity relationship studies generated eight active analogs of GJ072. Most of those analogs were effective on all three stop codons. GJ071 and GJ072, and some of the GJ072 analogs, appeared to be well tolerated by A-T cells. We also identified another two active RTCs in the primary screen, RTC204 and RTC219, which share a key structural feature with GJ072 and its analogs.


PLOS Genetics | 2013

ATM–Dependent MiR-335 Targets CtIP and Modulates the DNA Damage Response

Nathan T. Martin; Kotoka Nakamura; Robert Davies; Christina Brown; Rashmi Tunuguntla; Richard A. Gatti; Hailiang Hu

ATM plays a critical role in cellular responses to DNA double-strand breaks (DSBs). We describe a new ATM–mediated DSB–induced DNA damage response pathway involving microRNA (miRNA): irradiation (IR)-induced DSBs activate ATM, which leads to the downregulation of miR-335, a miRNA that targets CtIP, which is an important trigger of DNA end resection in homologous recombination repair (HRR). We demonstrate that CREB is responsible for a large portion of miR-335 expression by binding to the promoter region of miR-335. CREB binding is greatly reduced after IR, corroborating with previous studies that IR-activated ATM phosphorylates CREB to reduce its transcription activity. Overexpression of miR-335 in HeLa cells resulted in reduced CtIP levels and post-IR colony survival and BRCA1 foci formation. Further, in two patient-derived lymphoblastoid cell lines with decreased post-IR colony survival, a “radiosensitive” phenotype, we demonstrated elevated miR-335 expression, reduced CtIP levels, and reduced BRCA1 foci formation. Colony survival, BRCA1 foci, and CtIP levels were partially rescued by miRNA antisense AMO-miR-335 treatment. Taken together, these findings strongly suggest that an ATM–dependent CREB–miR-335–CtIP axis influences the selection of HRR for repair of certain DSB lesions.


Nature Communications | 2013

SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs

Peiyee Lee; Nathan T. Martin; Kotoka Nakamura; Soheila F. Azghadi; Mandana Amiri; Uri Ben-David; Susan Perlman; Richard A. Gatti; Hailiang Hu; William E. Lowry

Ataxia telangiectasia is a devastating neurodegenerative disease caused primarily by loss of function mutations in ATM, a hierarchical DNA repair gene and tumour suppressor. So far, murine models of ataxia telangiectasia have failed to accurately recapitulate many aspects of the disease, most notably, the progressive cerebellar ataxia. Here we present a model of human ataxia telangiectasia using induced pluripotent stem cells, and show that small molecule read-through compounds, designed to induce read-through of mRNA around premature termination codons, restore ATM activity and improve the response to DNA damage. This platform allows for efficient screening of novel compounds, identification of target and off-target effects, and preclinical testing on relevant cell types for the pathogenic dissection and treatment of ataxia telangiectasia.


Arthritis & Rheumatism | 2012

Defective DNA double-strand break repair in pediatric systemic lupus erythematosus

Robert Davies; Kelly Pettijohn; Francesca Fike; Jiexi Wang; Rashmi Tunuguntla; Hailiang Hu; Richard A. Gatti; Deborah McCurdy

OBJECTIVE Previous reports of cells from patients with systemic lupus erythematosus (SLE) note that repair of single-strand breaks is delayed, and these lesions may be converted to double-strand breaks (DSBs) at DNA replication forks. We undertook this study to assess the integrity of DSB recognition, signaling, and repair mechanisms in B lymphoblastoid cell lines derived from patients with pediatric SLE. METHODS Nine assays were used to interrogate DSB repair and recognition in lymphoblastoid cell lines from patients with pediatric SLE, including the neutral comet assay (NCA), colony survival assay (CSA), irradiation-induced foci formation for γ-H2AX and 53BP1 proteins, kinetics of phosphorylation of structural maintenance of chromosomes protein 1 (SMC1), postirradiation bromodeoxyuridine incorporation to evaluate S phase checkpoint integrity, monoubiquitination of Fanconi protein D2, ATM protein expression, and non-homologous DNA end joining protein expression and function. RESULTS Three of the 9 assays revealed abnormal patterns of response to irradiation-induced DNA damage. The NCA and CSA yielded aberrant results in the majority of SLE lymphoblastoid cell lines. Abnormal prolongation of SMC1 phosphorylation was also noted in 2 of 16 SLE lymphoblastoid cell lines. CONCLUSION Our data suggest that DSB repair is defective in some lymphoblastoid cell lines from pediatric patients with SLE, especially when assessed by both NCA and CSA. Since these studies are nonspecific, further studies of DNA repair and kinetics are indicated to further delineate the underlying pathogenesis of SLE and possibly identify therapeutic targets.


Current Opinion in Allergy and Clinical Immunology | 2008

New approaches to treatment of primary immunodeficiencies: fixing mutations with chemicals.

Hailiang Hu; Richard A. Gatti

Purpose of reviewThis review is to highlight the most current mutation-targeted therapeutic approaches and provide insights into new developments for treating primary immunodeficiencies. Recent findingsSignificant progress in mutation-targeted treatment was achieved in the past year with the identification and characterization of a translational read-through compound, PTC124. PTC124 demonstrates a new class of nontoxic bioavailable small drugs. Antisense oligonucleotide-mediated techniques such as splicing redirection, exon skipping, and mismatch repair have been successfully used to correct splicing, frameshift, and missense mutations, respectively. Delivery of antisense oligonucleotides to mammalian cells, including primary leukocytes and neurons, saw great progress during the past year. Recent advances for other approaches to correct frameshift and missense mutations are also considered. SummaryPrimary immunodeficiencies are monogenic disorders. The characterization and classification of disease-causing mutations facilitate the design and development of new mutation-targeted treatments. To date, using ataxia–telangiectasia (A–T) as a model primary immunodeficiency, the most promising advances have been with chemicals that read through various premature stop codons as well as with antisense oligonucleotides that mask aberrant splice sites. These principles can now be applied to other primary immunodeficiencies.

Collaboration


Dive into the Hailiang Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liutao Du

University of California

View shared research outputs
Top Co-Authors

Avatar

Francesca Fike

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Bertoni

University of California

View shared research outputs
Top Co-Authors

Avatar

Jin-Mo Ku

University of California

View shared research outputs
Top Co-Authors

Avatar

Mandana Amiri

University of California

View shared research outputs
Top Co-Authors

Avatar

Peiyee Lee

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge