Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hailong Piao is active.

Publication


Featured researches published by Hailong Piao.


Acta Biochimica et Biophysica Sinica | 2014

Long non-coding RNA HOTAIR in carcinogenesis and metastasis

Jinsong Zhang; Peijing Zhang; Li Wang; Hailong Piao; Li Ma

Long non-coding RNAs (lncRNAs) have gained massive attention in recent years as a potentially new and crucial layer of gene regulation. LncRNAs are prevalently transcribed in the genome, but their roles in gene regulation and disease development are largely unknown. HOX antisense intergenic RNA (HOTAIR), a lncRNA located in the HOXC locus, has been shown to repress HOXD gene expression and promote breast cancer metastasis. Mechanistically, HOTAIR interacts with and recruits polycomb repressive complex 2 (PRC2) and regulates chromosome occupancy by EZH2 (a subunit of PRC2), which leads to histone H3 lysine 27 trimethylation of the HOXD locus. Moreover, HOTAIR is pervasively overexpressed in most human cancers compared with noncancerous adjacent tissues. This review summarizes the studies on the HOTAIR lncRNA over the past 6 years.


Nature | 2017

Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK.

Chen-Song Zhang; Simon A. Hawley; Yue Zong; Mengqi Li; Zhichao Wang; Alexander Gray; Teng Ma; Jiwen Cui; Jin-Wei Feng; Mingjiang Zhu; Yu-Qing Wu; Terytty Yang Li; Zhiyun Ye; Shu-Yong Lin; Huiyong Yin; Hailong Piao; D. Grahame Hardie; Sheng-Cai Lin

The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.


Nature Cell Biology | 2013

Deubiquitylation and stabilization of PTEN by USP13

Jinsong Zhang; Peijing Zhang; Yongkun Wei; Hailong Piao; Wenqi Wang; Subbareddy Maddika; Min Wang; Dahu Chen; Yutong Sun; Mien Chie Hung; Junjie Chen; Li Ma

The tumour suppressor PTEN is frequently lost in human cancers. In addition to gene mutations and deletions, recent studies have revealed the importance of post-translational modifications, such as ubiquitylation, in the regulation of PTEN stability, activity and localization. However, the deubiquitylase that regulates PTEN polyubiquitylation and protein stability remains unknown. Here we screened a total of 30 deubiquitylating enzymes (DUBs) and identified five DUBs that physically associate with PTEN. One of them, USP13, stabilizes the PTEN protein through direct binding and deubiquitylation of PTEN. Loss of USP13 in breast cancer cells promotes AKT phosphorylation, cell proliferation, anchorage-independent growth, glycolysis and tumour growth through downregulation of PTEN. Conversely, overexpression of USP13 suppresses tumorigenesis and glycolysis in PTEN-positive but not PTEN-null breast cancer cells. Importantly, USP13 protein is downregulated in human breast tumours and correlates with PTEN protein levels. These findings identify USP13 as a tumour-suppressing protein that functions through deubiquitylation and stabilization of PTEN.


Journal of Mammary Gland Biology and Neoplasia | 2012

Non-Coding RNAs as Regulators of Mammary Development and Breast Cancer

Hailong Piao; Li Ma

Over the past decade, non-coding RNAs (ncRNAs) have become a new paradigm of gene regulation. ncRNAs are classified into two major groups based on their size: long non-coding RNAs (lncRNAs) and small non-coding RNAs (including microRNAs, piRNAs, snoRNAs, and endogenous siRNAs). Here we review the recently emerging role of ncRNAs in mammary development, tumorigenesis, and metastasis, with the focus being on microRNAs (miRNAs) and lncRNAs. These findings shed new light on normal development and malignant progression, and suggest the potential for using ncRNAs as new biomarkers of breast cancer and targets for treatment.


Cancer Research | 2014

FoxO Transcription Factors Promote AKT Ser473 Phosphorylation and Renal Tumor Growth in Response to Pharmacologic Inhibition of the PI3K–AKT Pathway

Aifu Lin; Hailong Piao; Li Zhuang; Dos D. Sarbassov; Li Ma; Boyi Gan

The PI3K-AKT pathway is hyperactivated in many human cancers, and several drugs to inhibit this pathway, including the PI3K/mTOR dual inhibitor NVP-BEZ235, are currently being tested in various preclinical and clinical trials. It has been shown that pharmacologic inhibition of the PI3K-AKT pathway results in feedback activation of other oncogenic signaling pathways, which likely will limit the clinical utilization of these inhibitors in cancer treatment. However, the underlying mechanisms of such feedback regulation remain incompletely understood. The PI3K-AKT pathway is a validated therapeutic target in renal cell carcinoma (RCC). Here, we show that FoxO transcription factors serve to promote AKT phosphorylation at Ser473 in response to NVP-BEZ235 treatment in renal cancer cells. Inactivation of FoxO attenuated NVP-BEZ235-induced AKT Ser473 phosphorylation and rendered renal cancer cells more susceptible to NVP-BEZ235-mediated cell growth suppression in vitro and tumor shrinkage in vivo. Mechanistically, we showed that FoxOs upregulated the expression of Rictor, an essential component of MTOR complex 2, in response to NVP-BEZ235 treatment and revealed that Rictor is a key downstream target of FoxOs in NVP-BEZ235-mediated feedback regulation. Finally, we show that FoxOs similarly modulate the feedback response on AKT Ser473 phosphorylation and renal tumor growth by other phosphoinositide 3-kinase (PI3K) or AKT inhibitor treatment. Together, our study reveals a novel mechanism of PI3K-AKT inhibition-mediated feedback regulation and may identify FoxO as a novel biomarker to stratify patients with RCC for PI3K or AKT inhibitor treatment, or a novel therapeutic target to synergize with PI3K-AKT inhibition in RCC treatment.


Scientific Reports | 2016

Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer

Jia Li; Shancheng Ren; Hailong Piao; Fubo Wang; Peiyuan Yin; Chuanliang Xu; Xin Lu; Guozhu Ye; Yaping Shao; Min Yan; Xinjie Zhao; Yinghao Sun; Guowang Xu

In-depth delineation of lipid metabolism in prostate cancer (PCa) is significant to open new insights into prostate tumorigenesis and progression, and provide potential biomarkers with greater accuracy for improved diagnosis. Here, we performed lipidomics and transcriptomics in paired prostate cancer tumor (PCT) and adjacent nontumor (ANT) tissues, followed by external validation of biomarker candidates. We identified major dysregulated pathways involving lipogenesis, lipid uptake and phospholipids remodeling, correlated with widespread lipid accumulation and lipid compositional reprogramming in PCa. Specifically, cholesteryl esters (CEs) were most prominently accumulated in PCa, and significantly associated with cancer progression and metastasis. We showed that overexpressed scavenger receptor class B type I (SR-BI) may contribute to CEs accumulation. In discovery set, CEs robustly differentiated PCa from nontumor (area under curve (AUC) of receiver operating characteristics (ROC), 0.90–0.94). In validation set, CEs potently distinguished PCa and non-malignance (AUC, 0.84–0.91), and discriminated PCa and benign prostatic hyperplasia (BPH) (AUC, 0.90–0.96), superior to serum prostate-specific antigen (PSA) (AUC = 0.83). Cholesteryl oleate showed highest AUCs in distinguishing PCa from non-malignance or BPH (AUC = 0.91 and 0.96). Collectively, our results unravel the major lipid metabolic aberrations in PCa and imply the potential role of CEs, particularly, cholesteryl oleate, as molecular biomarker for PCa detection.


Molecular & Cellular Proteomics | 2014

Proteomic Analysis of the Human Cyclin-dependent Kinase Family Reveals a Novel CDK5 Complex Involved in Cell Growth and Migration

Shuangbing Xu; Xu Li; Zihua Gong; Wenqi Wang; Yujing Li; Binoj C. Nair; Hailong Piao; Kunyu Yang; Gang Wu; Junjie Chen

Cyclin-dependent kinases (CDKs) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that play critical roles in the control of cell-cycle progression, transcription, and neuronal functions. However, the functions, substrates, and regulation of many CDKs are poorly understood. To systematically investigate these features of CDKs, we conducted a proteomic analysis of the CDK family and identified their associated protein complexes in two different cell lines using a modified SAINT (Significance Analysis of INTeractome) method. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000593 and DOI 10.6019/PXD000593. We identified 753 high-confidence candidate interaction proteins (HCIPs) in HEK293T cells and 352 HCIPs in MCF10A cells. We subsequently focused on a neuron-specific CDK, CDK5, and uncovered two novel CDK5-binding partners, KIAA0528 and fibroblast growth factor (acidic) intracellular binding protein (FIBP), in non-neuronal cells. We showed that these three proteins form a stable complex, with KIAA0528 and FIBP being required for the assembly and stability of the complex. Furthermore, CDK5-, KIAA0528-, or FIBP-depleted breast cancer cells displayed impaired proliferation and decreased migration, suggesting that this complex is required for cell growth and migration in non-neural cells. Our study uncovers new aspects of CDK functions, which provide direction for further investigation of these critical protein kinases.


Molecular & Cellular Proteomics | 2014

Proteomic Analysis of the Human CDK Family Reveals a Novel CDK5 Complex Involved in Cell Growth and Migration

Shuangbing Xu; Xu Li; Zihua Gong; Wenqi Wang; Yujing Li; Binoj C. Nair; Hailong Piao; Kunyu Yang; Gang Wu; Junjie Chen

Cyclin-dependent kinases (CDKs) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that play critical roles in the control of cell-cycle progression, transcription, and neuronal functions. However, the functions, substrates, and regulation of many CDKs are poorly understood. To systematically investigate these features of CDKs, we conducted a proteomic analysis of the CDK family and identified their associated protein complexes in two different cell lines using a modified SAINT (Significance Analysis of INTeractome) method. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000593 and DOI 10.6019/PXD000593. We identified 753 high-confidence candidate interaction proteins (HCIPs) in HEK293T cells and 352 HCIPs in MCF10A cells. We subsequently focused on a neuron-specific CDK, CDK5, and uncovered two novel CDK5-binding partners, KIAA0528 and fibroblast growth factor (acidic) intracellular binding protein (FIBP), in non-neuronal cells. We showed that these three proteins form a stable complex, with KIAA0528 and FIBP being required for the assembly and stability of the complex. Furthermore, CDK5-, KIAA0528-, or FIBP-depleted breast cancer cells displayed impaired proliferation and decreased migration, suggesting that this complex is required for cell growth and migration in non-neural cells. Our study uncovers new aspects of CDK functions, which provide direction for further investigation of these critical protein kinases.


Oncogene | 2017

TRIP12 as a mediator of human papillomavirus/p16-related radiation enhancement effects.

L. Wang; Peijing Zhang; David P. Molkentine; Chun Ming Chen; Jessica M. Molkentine; Hailong Piao; U. Raju; Jiexin Zhang; David Valdecanas; R. C. Tailor; Howard D. Thames; T. A. Buchholz; Junjie Chen; Li Ma; K. A. Mason; K.K. Ang; Raymond E. Meyn; H. D. Skinner

Patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) have better responses to radiotherapy and higher overall survival rates than do patients with HPV-negative HNSCC, but the mechanisms underlying this phenomenon are unknown. p16 is used as a surrogate marker for HPV infection. Our goal was to examine the role of p16 in HPV-related favorable treatment outcomes and to investigate the mechanisms by which p16 may regulate radiosensitivity. HNSCC cells and xenografts (HPV/p16-positive and -negative) were used. p16-overexpressing and small hairpin RNA-knockdown cells were generated, and the effect of p16 on radiosensitivity was determined by clonogenic cell survival and tumor growth delay assays. DNA double-strand breaks (DSBs) were assessed by immunofluorescence analysis of 53BP1 foci; DSB levels were determined by neutral comet assay; western blotting was used to evaluate protein changes; changes in protein half-life were tested with a cycloheximide assay; gene expression was examined by real-time polymerase chain reaction; and data from The Cancer Genome Atlas HNSCC project were analyzed. p16 overexpression led to downregulation of TRIP12, which in turn led to increased RNF168 levels, repressed DNA damage repair (DDR), increased 53BP1 foci and enhanced radioresponsiveness. Inhibition of TRIP12 expression further led to radiosensitization, and overexpression of TRIP12 was associated with poor survival in patients with HPV-positive HNSCC. These findings reveal that p16 participates in radiosensitization through influencing DDR and support the rationale of blocking TRIP12 to improve radiotherapy outcomes.


Nature Genetics | 2018

Long noncoding RNA MALAT1 suppresses breast cancer metastasis

Jongchan Kim; Hailong Piao; Beom Jun Kim; Fan Yao; Zhenbo Han; Yumeng Wang; Zhenna Xiao; Ashley N. Siverly; Sarah E. Lawhon; Baochau N. Ton; Hyemin Lee; Zhicheng Zhou; Boyi Gan; Shinichi Nakagawa; Matthew J. Ellis; Han Liang; Mien Chie Hung; M. James You; Yutong Sun; Li Ma

MALAT1 has previously been described as a metastasis-promoting long noncoding RNA (lncRNA). We show here, however, that targeted inactivation of the Malat1 gene in a transgenic mouse model of breast cancer, without altering the expression of its adjacent genes, promotes lung metastasis, and that this phenotype can be reversed by genetic add-back of Malat1. Similarly, knockout of MALAT1 in human breast cancer cells induces their metastatic ability, which is reversed by re-expression of Malat1. Conversely, overexpression of Malat1 suppresses breast cancer metastasis in transgenic, xenograft, and syngeneic models. Mechanistically, the MALAT1 lncRNA binds and inactivates the prometastatic transcription factor TEAD, preventing TEAD from associating with its co-activator YAP and target gene promoters. Moreover, MALAT1 levels inversely correlate with breast cancer progression and metastatic ability. These findings demonstrate that MALAT1 is a metastasis-suppressing lncRNA rather than a metastasis promoter in breast cancer, calling for rectification of the model for this highly abundant and conserved lncRNA.Targeted inactivation, restoration and overexpression of MALAT1 in multiple in vivo models demonstrate that the lncRNA MALAT1 suppresses breast cancer metastasis through binding and inactivation of the pro-metastatic transcription factor TEAD.

Collaboration


Dive into the Hailong Piao's collaboration.

Top Co-Authors

Avatar

Li Ma

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Junjie Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Peijing Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Wenqi Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gang Wu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kunyu Yang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zhichao Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Binoj C. Nair

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jinsong Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xu Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge