Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hailong Yan is active.

Publication


Featured researches published by Hailong Yan.


Scientific Reports | 2015

Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system

Xiaolong Wang; Honghao Yu; Anmin Lei; Jiankui Zhou; Wenxian Zeng; Haijing Zhu; Zhiming Dong; Yiyuan Niu; Bingbo Shi; Bei Cai; Jinwang Liu; Shuai Huang; Hailong Yan; Xiaoe Zhao; Guangxian Zhou; Xiaoling He; Xiaoxu Chen; Yuxin Yang; Yu Jiang; Lei Shi; Xiue Tian; Yongjun Wang; Baohua Ma; Xingxu Huang; Lei Qu; Yulin Chen

Recent advances in the study of the CRISPR/Cas9 system have provided a precise and versatile approach for genome editing in various species. However, the applicability and efficiency of this method in large animal models, such as the goat, have not been extensively studied. Here, by co-injection of one-cell stage embryos with Cas9 mRNA and sgRNAs targeting two functional genes (MSTN and FGF5), we successfully produced gene-modified goats with either one or both genes disrupted. The targeting efficiency of MSTN and FGF5 in cultured primary fibroblasts was as high as 60%, while the efficiency of disrupting MSTN and FGF5 in 98 tested animals was 15% and 21% respectively, and 10% for double gene modifications. The on- and off-target mutations of the target genes in fibroblasts, as well as in somatic tissues and testis of founder and dead animals, were carefully analyzed. The results showed that simultaneous editing of several sites was achieved in large animals, demonstrating that the CRISPR/Cas9 system has the potential to become a robust and efficient gene engineering tool in farm animals, and therefore will be critically important and applicable for breeding.


PLOS ONE | 2015

Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing.

Xufeng Han; Yuxin Yang; Hailong Yan; Xiaolong Wang; Lei Qu; Yulin Chen

The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host’s health and improve animal performance.


Scientific Reports | 2016

Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep

Xiaolong Wang; Yiyuan Niu; Jiankui Zhou; Honghao Yu; Qifang Kou; Anmin Lei; Xiaoe Zhao; Hailong Yan; Bei Cai; Qiaoyan Shen; Shiwei Zhou; Haijing Zhu; Guangxian Zhou; Wenzhi Niu; Jinlian Hua; Yu Jiang; Xingxu Huang; Baohua Ma; Yulin Chen

The CRISPR/Cas9 system provides a flexible approach for genome engineering of genetic loci. Here, we successfully achieved precise gene targeting in sheep by co-injecting one-cell-stage embryos with Cas9 mRNA and RNA guides targeting three genes (MSTN, ASIP, and BCO2). We carefully examined the sgRNAs:Cas9-mediated targeting effects in injected embryos, somatic tissues, as well as gonads via cloning and sequencing. The targeting efficiencies in these three genes were within the range of 27–33% in generated lambs, and that of simultaneously targeting the three genes was 5.6%, which demonstrated that micro-injection of zygotes is an efficient approach for generating gene-modified sheep. Interestingly, we observed that disruption of the MSTN gene resulted in the desired muscle hypertrophy that is characterized by enlarged myofibers, thereby providing the first detailed evidence supporting that gene modifications had occurred at both the genetic and morphological levels. In addition, prescreening for the off-target effect of sgRNAs was performed on fibroblasts before microinjection, to ensure that no detectable off-target mutations from founder animals existed. Our findings suggested that the CRISPR/Cas9 method can be exploited as a powerful tool for livestock improvement by simultaneously targeting multiple genes that are responsible for economically significant traits.


Scientific Reports | 2016

Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits.

Xiaolong Wang; Jing Liu; Guangxian Zhou; Jiazhong Guo; Hailong Yan; Yiyuan Niu; Yan Li; Chao Yuan; Rongqing Geng; Xianyong Lan; Xiaopeng An; Xingui Tian; Huangkai Zhou; Jiuzhou Song; Yu Jiang; Yulin Chen

The goat (Capra hircus) is one of the first farm animals that have undergone domestication and extensive natural and artificial selection by adapting to various environments, which in turn has resulted in its high level of phenotypic diversity. Here, we generated medium-coverage (9–13×) sequences from eight domesticated goat breeds, representing morphologically or geographically specific populations, to identify genomic regions representing selection signatures. We discovered ~10 million single nucleotide polymorphisms (SNPs) for each breed. By combining two approaches, ZHp and di values, we identified 22 genomic regions that may have contributed to the phenotypes in coat color patterns, body size, cashmere traits, as well as high altitude adaptation in goat populations. Candidate genes underlying strong selection signatures including coloration (ASIP, KITLG, HTT, GNA11, and OSTM1), body size (TBX15, DGCR8, CDC25A, and RDH16), cashmere traits (LHX2, FGF9, and WNT2), and hypoxia adaptation (CDK2, SOCS2, NOXA1, and ENPEP) were identified. We also identified candidate functional SNPs within selected genes that may be important for each trait. Our results demonstrated the potential of using sequence data in identifying genomic regions that are responsible for agriculturally significant phenotypes in goats, which in turn can be used in the selection of goat breeds for environmental adaptation and domestication.


PLOS ONE | 2016

Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats.

Ye Gao; Xiaolong Wang; Hailong Yan; Jie Zeng; Sen Ma; Yiyuan Niu; Guangxian Zhou; Yu Jiang; Yulin Chen

Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members played vital roles in HF differentiation and maturation. The DEGs we found could be attributed to the generation and development of HF, and thus will be critically important for improving the quantity and quality of fleece production in animals for fibres.


Frontiers in Genetics | 2018

Insertion/Deletion Within the KDM6A Gene Is Significantly Associated With Litter Size in Goat

Yang Cui; Hailong Yan; Ke Wang; Han Xu; Xuelian Zhang; Haijing Zhu; Jinwang Liu; Lei Qu; Xianyong Lan; Chuanying Pan

A previous whole-genome association analysis identified lysine demethylase 6A (KDM6A), which encodes a type of histone demethylase, as a candidate gene associated to goat fecundity. KDM6A gene knockout mouse disrupts gametophyte development, suggesting that it has a critical role in reproduction. In this study, goat KDM6A mRNA expression profiles were determined, insertion/deletion (indel) variants in the gene identified, indel variants effect on KDM6A gene expression assessed, and their association with first-born litter size analyzed in 2326 healthy female Shaanbei white cashmere goats. KDM6A mRNA was expressed in all tissues tested (heart, liver, spleen, lung, kidney, muscle, brain, skin and testis); the expression levels in testes at different developmental stages [1-week-old (wk), 2, 3 wk, 1-month-old (mo), 1.5 and 2 mo] indicated a potential association with the mitosis-to-meiosis transition, implying that KDM6A may have an essential role in goat fertility. Meanwhile, two novel intronic indels of 16 bp and 5 bp were identified. Statistical analysis revealed that only the 16 bp indel was associated with first-born litter size (P < 0.01), and the average first-born litter size of individuals with an insertion/insertion genotype higher than that of those with the deletion/deletion genotype (P < 0.05). There was also a significant difference in genotype distributions of the 16 bp indel between mothers of single-lamb and multi-lamb litters in the studied goat population (P = 0.001). Consistently, the 16 bp indel also had a significant effect on KDM6A gene expression. Additionally, there was no significant linkage disequilibrium (LD) between these two indel loci, consistent with the association analysis results. Together, these findings suggest that the 16 bp indel in KDM6A may be useful for marker-assisted selection (MAS) of goats.


Brazilian Journal of Microbiology | 2015

Use of green fluorescent protein to monitor Lactobacillus plantarum in the gastrointestinal tract of goats.

Xufeng Han; Lei Wang; Wei Li; Bibo Li; Yuxin Yang; Hailong Yan; Lei Qu; Yulin Chen

The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.


Transgenic Research | 2017

Tβ4-overexpression based on the piggyBac transposon system in cashmere goats alters hair fiber characteristics

Bingbo Shi; Qiang Ding; Xiaolin He; Haijing Zhu; Yiyuan Niu; Bei Cai; Jiao Cai; Anming Lei; Danju Kang; Hailong Yan; Baohua Ma; Xiaolong Wang; Lei Qu; Yulin Chen

AbstractIncreasing cashmere yield is one of the vital aims of cashmere goats breeding. Compared to traditional breeding methods, transgenic technology is more efficient and the piggyBac (PB) transposon system has been widely applied to generate transgenic animals. For the present study, donor fibroblasts were stably transfected via a PB donor vector containing the coding sequence of cashmere goat thymosin beta-4 (Tβ4) and driven by a hair follicle-specific promoter, the keratin-associated protein 6.1 (KAP6.1) promoter. To obtain genetically modified cells as nuclear donors, we co-transfected donor vectors into fetal fibroblasts of cashmere goats. Five transgenic cashmere goats were generated following somatic cell nuclear transfer (SCNT). Via determination of the copy numbers and integration sites, the Tβ4 gene was successfully inserted into the goat genome. Histological examination of skin tissue revealed that Tβ4-overexpressing, transgenic goats had a higher secondary to primary hair follicle (S/P) ratio compared to wild type goats. This indicates that Tβ4-overexpressing goats possess increased numbers of secondary hair follicles (SHF). Our results indicate that Tβ4-overexpression in cashmere goats could be a feasible strategy to increase cashmere yield.


Gene | 2018

Goat CTNNB1: mRNA expression profile of alternative splicing in testis and association analysis with litter size

Xuelian Zhang; Hailong Yan; Ke Wang; Tong Zhou; Mingyue Chen; Haijing Zhu; Chuanying Pan; Enping Zhang

Catenin beta 1 (CTNNB1, also known as β-catenin), is a key gene involved in wnt-β-catenin signaling pathway and plays a significant role in animal reproduction. The aim of this study was to explore the expression profiles and different splice variants of the cashmere goat CTNNB1 gene in testis, as well as to find novel insertion/deletion mutations (indels) and to further evaluate their association with litter size in Shaanbei white cashmere (SBWC) goats (n = 850) using Inner Mongolia white cashmere (IMWC) goats as a control group (n = 311). In this study, the CTNNB1 mRNA was detectable in all tissues, and in testis its expression was significantly lower than kidney, heart and so on. Meanwhile, four transcript variants, named by Ctnnb1-A/-B/-C/-D, were identified for the first time in SBWC goats, and Ctnnb1-C had the highest expression in testis, indicating that it plays an effective role in male fertility. Furthermore, a novel 26-bp indel was found within the CTNNB1 gene in both SBWC and IMWC breeds. A Chi-square test (χ2-test) showed that the difference between the high-fecundity group (SBWC) and the low-fertility group (IMWC) was extremely significant (P = 1.09E-10). Only one insertion/deletion (ID) genotype in IMWC goats which was unable to perform association analysis. In association analysis, the 26-bp indel was significantly associated with the first-born litter size in SBWC female goats (P = 0.026), and the individuals with ID genotype (n = 96) significantly had more lambs than those with insertion/insertion (II) genotype (n = 611) (P = 0.019). These findings revealed that the alternative splicing was involved in the regulation of CTNNB1 expression and the 26-bp indel could be utilized as a candidate marker for marker-assisted selection (MAS) in cashmere goat industry.


PLOS ONE | 2016

Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers.

Xiaolong Wang; Bei Cai; Jiankui Zhou; Haijing Zhu; Yiyuan Niu; Baohua Ma; Honghao Yu; Anmin Lei; Hailong Yan; Qiaoyan Shen; Lei Shi; Xiaoe Zhao; Jinlian Hua; Xingxu Huang; Lei Qu; Yulin Chen

Collaboration


Dive into the Hailong Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiankui Zhou

ShanghaiTech University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge