Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hailong Yuan is active.

Publication


Featured researches published by Hailong Yuan.


European Journal of Pharmaceutics and Biopharmaceutics | 2013

Development and characterization of an orodispersible film containing drug nanoparticles

Baode Shen; Chengying Shen; Xu-dong Yuan; Jinxia Bai; Qingyuan Lv; He Xu; Ling Dai; Chao Yu; Jin Han; Hailong Yuan

In this study, a novel orodispersible film (ODF) containing drug nanoparticles was developed with the goal of transforming drug nanosuspensions into a solid dosage form and enhancing oral bioavailability of drugs with poor water solubility. Nanosuspensions were prepared by high pressure homogenization and then transformed into ODF containing drug nanoparticles by mixing with hydroxypropyl methylcellulose solution containing microcrystalline cellulose, low substituted hydroxypropylcellulose and PEG-400 followed by film casting and drying. Herpetrione, a novel and potent antiviral agent with poor water solubility that extracted from Herpetospermum caudigerum, was chosen as a model drug and studied systematically. The uniformity of dosage units of the preparation was acceptable according to the criteria of Japanese Pharmacopoeia 15. The ODF was disintegrated in water within 30s with reconstituted nanosuspensions particle size of 280 ± 11 nm, which was similar to that of drug nanosuspensions, indicating a good redispersibility of the fast dissolving film. Result of X-ray diffraction showed that HPE in the ODF was in the amorphous state. In the in vitro dissolution test, the ODF containing HPE nanoparticles showed an increased dissolution velocity markedly. In the pharmacokinetics study in rats, compared to HPE coarse suspensions, the ODF containing HPE nanoparticles exhibited significant increase in AUC0-24h, Cmax and decrease in Tmax, MRT. The result revealed that the ODF containing drug nanoparticles may provide a potential opportunity in transforming drug nanosuspensions into a solid dosage form as well as enhancing the dissolution rate and oral bioavailability of poorly water-soluble drugs.


Journal of Drug Targeting | 2012

Improvement of oral bioavailability of glycyrrhizin by sodium deoxycholate/phospholipid-mixed nanomicelles

Shixiao Jin; Shanshan Fu; Jin Han; Shiying Jin; Qingyuan Lv; Yi Lu; Jianping Qi; Wei Wu; Hailong Yuan

Glycyrrhizin (GL), extracted from the Glycyrrhiza glabra L., is active triterpenoid saponin components. However, due to its impermeability across the gastrointestinal mucosa, oral bioavailability of the drug was relatively low. To improve its oral bioavailability, formulation of GL as sodium deoxycholate/phospholipid-mixed nanomicelles (SDC/PL-MMs) has been performed in this study. GL-SDC/PL-MMs were produced by a film dispersion method and then investigated using photon correlation spectroscopy (PCS), zeta potential measurement, as well as its physical stability after storage for 10, 20, 30, 60, 90 and 120 days. To verify the theoretical hypothesis, pharmacokinetics and pharmacodynamic studies based on carbon tetrachloride (CCl4)-induced acute liver injury was investigated. Results showed that a narrow size distributed nanomicelles with a mean particle size of 82.99 ± 7.5 nm and a zeta potential of −32.23 ± 1.05 mV was obtained. In the pharmacokinetics, GL-SDC/PL-MMs show a significant superiority in AUC0–t, Cmax and other pharmacokinetic parameters compared with the control group. In the pharmacodynamic studies, compared with the bifendate control group, GL-SDC/PL-MMs showed an equivalent effect in reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST) and improving the pathological changes of liver tissue. These results revealed that SDC/PL-MMs could enhance GL absorption in gastrointestinal tract and pharmacodynamic effect in the treatment of acute liver injury caused by CCl4, and SDC/PL-MMs might be a good choice for oral delivery of poor bioavailability drug like GL.


Journal of Ethnopharmacology | 2015

Hepatoprotective effects of lignans extract from Herpetospermum caudigerum against CCl4-induced acute liver injury in mice

Baode Shen; Hongge Chen; Chengying Shen; Pinghua Xu; Juanjuan Li; Gang Shen; Hailong Yuan; Jin Han

ETHNOPHARMACOLOGICAL RELEVANCE Herpetospermum caudigerum (HCD) is traditionally used for the treatment of liver diseases, cholic diseases, and dyspepsia as a well-known Tibetan medicine in China. The present study was designed to investigate the hepatoprotective effect of HCD and ascertain its active ingredients and possible mechanism. MATERIALS AND METHODS Mice were orally administrated with different parts (seeds, testa and kernel) and fractions of HCD. The hepatoprotective activities of different parts (seeds, testa and kernel) and three fractions (petroleum ether fraction, ethyl acetate fraction and aqueous fraction) with different polarities of HCD and herpetrione (HPE) isolated from HCD were determined using a mouse model of CCl4-induced liver injury based on the analysis of serum ALT and AST activities and the changes of antioxidant parameters like malondialdehyde (MDA) content, glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the liver. Moreover, the chemical analysis of different parts and fractions of HCD was later analyzed by HPLC. RESULTS Our results showed that the ethyl acetate fraction and HPE significantly alleviated liver injury as indicated by the decreased levels of serum ALT and AST and reduce the pathological tissue damage induced by CCl4. Moreover, they decreased the MDA content and increased the levels of SOD, GSH and GSH-Px. Chemical analysis indicated that the ethyl acetate fraction were rich in HPE. CONCLUSIONS The lignans extract of Herpetospermum caudigerum is effective for the prevention of CCl4-induced hepatic damage in mice and HPE may be partially responsible for the pharmacological effect of hepatoprotection. The hepatoprotective effect may be related to its free radical scavenging effect, inhibiting lipid peroxidation and increasing antioxidant activity.


Journal of Biomaterials Applications | 2014

Development of poly(N-isopropylacrylamide)/alginate copolymer hydrogel-grafted fabrics embedding of berberine nanosuspension for the infected wound treatment

He Xu; Xu-dong Yuan; Baode Shen; Jin Han; Qingyuan Lv; Ling Dai; Ming-Gui Lin; Chao Yu; Jinxia Bai; Hailong Yuan

In the present study, a novel hydrogel-grafted fabrics embedding of berberine nanosuspension was developed for the treatment of infected wound. Hydrogel-grafted fabric was prepared by graft copolymerization of N-isopropylacrylamide and alginate using ceric ammonium nitrate as initiator. Berberine nanosuspension was prepared and embedded in the hydrogel-grafted fabrics to achieve sustained drug release. The prepared hydrogel-grafted fabrics embedding of berberine nanosuspension was characterized by FT-IR spectroscopy, scanning electron microscopy, and swelling degree studies. Fourier transform infrared spectroscopy revealed that berberine was embedded into the matrix of hydrogel-grafted fabrics, rather than on the surface. Scanning electron microscopy showed that a thin hydrogel layer was formed on the surface of nonwoven fibers. The swelling study showed that hydrogel-grafted fabric had water absorbing characteristic with reversible temperature sensitivity. The drug release study demonstrated that hydrogel-grafted fabrics can be used as a sustained drug delivery system of hydrophobic compounds. The berberine nanosuspension embedded hydrogel-grafted fabric was further investigated in an animal infected wound model and was found to be a very promising wound healing dressing for the treatment and healing of infected wounds.


Drug Delivery | 2015

Mucoadhesive buccal films containing phospholipid-bile salts-mixed micelles as an effective carrier for Cucurbitacin B delivery

Qingyuan Lv; Chengying Shen; Xianyi Li; Baode Shen; Chao Yu; Pinghua Xu; He Xu; Jin Han; Hailong Yuan

Abstract Cucurbitacin B (Cu B), a potent anti-cancer agent, suffers with the problems of water-insoluble, gastrointestinal side effects and non-specific toxicity via oral administration and drawbacks in patient’s compliance and acceptance through injections. An integration of nanoscale carriers with mucoadhesive buccal films drug delivery system would resolve these issues effectively with greater therapeutic benefits and clinical significance. Thus, the drug loaded mucoadhesive buccal film was developed and characterized in this study and the carboxymethyl chitosan (CCS) was chosen as a bioadhesive polymer, glycerol was chosen as a plasticizer and phospholipid-bile salts-mixed micelles (PL-BS-MMs) was selected as the nanoscale carriers. The CCS-films containing Cu B loaded PL-SDC-MMs was evaluated for the mechanical properties, mucoadhesion properties, in vitro water-uptake, in vitro release and morphological properties, respectively. The optimal CCS-films containing Cu B loaded PL-SDC-MMs was easily reconstituted in a transparent and clear solution with spherical micelles in the submicron range. The in vivo study revealed a greater and more extended release of Cu B from nanoscale CCS-films compared to that from a conventional CCS films (C-CCS-films) and oral marketed tablet (Hulusupian). The absorption of Cu B from CCS-films containing Cu B loaded PL-SDC-MMs resulted in 2.69-fold increased in bioavailability as compared to conventional tablet formulation and 10.46 times with reference to the C-CCS-films formulation. Thus, this kind of mucoadhesive buccal film might be an alternative safe route for delivery of Cu B with better patient compliance and higher bioavailability for the treatments.


Drug Development and Industrial Pharmacy | 2014

Formulation and optimization of a novel oral fast dissolving film containing drug nanoparticles by Box-Behnken design-response surface methodology.

Chengying Shen; Baode Shen; He Xu; Jinxia Bai; Ling Dai; Qingyuan Lv; Jin Han; Hailong Yuan

Abstract Objective: The purpose of this study was to design and optimize a novel drug nanoparticles-loaded oral fast dissolving film (NP-OFDF) using Box–Behnken design–response surface methodology. Methods: Drug nanosuspensions produced from high pressure homogenization were transformed into oral fast dissolving film containing drug nanoparticles by casting methods. Herpetrione (HPE), a novel and potent antiviral agent with poor water solubility that was extracted from Herpetospermum caudigerum, was studied as the model drug. The formulations of oral fast dissolving film containing HPE nanoparticles (HPE-NP-OFDF) were optimized by employing Box-Behnken design–response surface methodology and then systematically characterized. Results: The optimized HPE-NP-OFDF was disintegrated in water within 20 s with reconstituted nanosuspensions particle size of 299.31 nm. Scanning electron microscopy (SEM) images showed that well-dispersed HPE nanoparticles with slight adhesion to each other were exposed on the surface of film or embedded in film. The X-ray diffractogram (XRD) analysis suggested that HPE in the HPE-NP-OFDF was in the amorphous state. In-vitro release study, approximate 77.23% of HPE was released from the HPE-NP-OFDF within 5 min, which was more than eight times compared with that of HPE raw materials (9.57%). Conclusion: The optimized HPE-NP-OFDF exhibits much faster drug release rates compared to HPE raw material, which indicated that this novel NP-OFDF may provide a potential opportunity for oral delivery of drugs with poor water solubility.


International Journal of Pharmaceutics | 2015

Improve bile duct-targeted drug delivery and therapeutic efficacy for cholangiocarcinoma by cucurbitacin B loaded phospholipid complex modified with berberine hydrochloride.

Ling Cheng; Pinghua Xu; Baode Shen; Gang Shen; Juanjuan Li; Ling Qiu; Chao-yong Liu; Hailong Yuan; Jin Han

In present study, a novel phospholipid complex loaded cucurbitacin B modified with berberine hydrochloride (CUB-PLC-BER) was prepared by a simple solvent evaporation method with the aim of improving bile duct-targeted drug delivery and therapeutic efficacy for cholangiocarcinoma (CC). The complexs physicochemical properties were systemically investigated in terms of scanning electron microscopy (SEM), x-ray diffraction (XRD) and infrared absorption spectroscopy (IR). In vivo and in vitro antitumor studies, CUB-PLC-BER and the unmodified cucurbitacin B-phospholipid complex (CUB-PLC) presented stronger antitumor efficacy against human cholangiocarcinoma cells (QBC939 cells) than free cucurbitacin B (CUB), while phospholipids (PL) itself had no significant toxicity. Besides that, CUB-PLC showed the advantage over the free CUB and CUB-PLC-BER with regard to the inhibition of tumor growth in vivo antitumor study. Failure to establish the orthotopic CC model, the study attempted to measure the level of CUB in plasma and in bile to explore bile duct-targeted effect indirectly. In the pharmacokinetics study in rats, the average values of Cmax and AUC0-8h of CUB-PLC-BER group in rat bile were higher than those of CUB-PLC, while an opposite result was found in plasma. Meanwhile, the Cmax, AUC0-8h and AUC0-24h of CUB were the least both in plasma and in bile. The results indicated that the CUB-PLC-BER tended to provide a high and prolonged drug concentration to bile duct, and PL played a central role in internalizing CUB into cells to improve the water insoluble drugs permeability, which was of great benefit to enhance the bioavailability of CUB and improve therapeutic efficacy of CC. These results elucidated the potential of CUB-PLC-BER as drug delivery system for improving bile duct-targeted and therapeutic efficacy for CC.


International Journal of Nanomedicine | 2014

Application of spray granulation for conversion of mixed phospholipid-bile salt micelles to dry powder form: influence of drug hydrophobicity on nanoparticle reagglomeration

Qingyuan Lv; Xianyi Li; Baode Shen; He Xu; Chengying Shen; Ling Ling Dai; Jinxia Bai; Hailong Yuan; Jin Tao Han

The aim of this study was to investigate the feasibility of using spray granulation as a drying method to convert phospholipid (PL)-sodium deoxycholate (SDC)-mixed micelles (MMs) containing a water-insoluble drug to a solid dosage form and to evaluate how drugs with significantly different physicochemical properties affect the spray granulation process and subsequent in vitro and in vivo processes. Cucurbitacin B (Cu B) and glycyrrhizin (GL) were used as the model drugs. After spray granulation, the dried Cu B-PL/SDC-MM powder was completely redispersible within 15 minutes in vitro. Meanwhile, the area under the curve during 24 hours (AUC0–24) and peak serum concentration from the dried powder were significantly (P<0.05) lower than the values from Cu B-PL/SDC-MMs in vivo. However, a better result was obtained for GL, ie, the drug was redispersed completely within 5 minutes in vitro. Further, absorption from the dried GL-PL/SDC-MM powder was increased to the same level as that for GL-PL/SDC-MMs in vivo compared with the control group. The difference in these results can be found in Cu B and GL. Cu B nanoparticles reagglomerated when released, resulting in slower redispersibility and less absorption compared with the original PL-SDC-MMs. However, no agglomeration or delay was observed for GL. A possible explanation is the difference in surface hydrophobicity between Cu B and GL. The results of this study not only show that spray granulation is an effective drying technique that can complement spray-drying and freeze-drying, but also confirm that the physicochemical properties of a drug have a significant influence on the in vitro and in vivo performance of the dried powder obtained after spray granulation.


Drug Development and Industrial Pharmacy | 2016

Hyperoside nanocrystals for HBV treatment: process optimization, in vitro and in vivo evaluation

Baode Shen; Na Wu; Chengying Shen; Fucheng Zhang; Yan Wu; Pinghua Xu; Lihong Zhang; Wei Wu; Yi Lu; Jin Han; Yonggang Wang; Hailong Yuan

Abstract The aim of this study was to develop hyperoside (Hyp) nanocrystals to enhance its dissolution rate, oral bioavailability and anti-HBV activity. Hyp nanocrystals were prepared using high pressure homogenization technique followed by lyophilization. A Box–Behnken design approach was employed for process optimization. The physicochemical properties, pharmacokinetics and anti-HBV activity in vivo of Hyp nanocrystal prepared with the optimized formulation were systematically investigated. Hyp nanocrystals prepared with the optimized formulation was found to be rod shaped with particle size of 384 ± 21 nm and PDI of 0.172 ± 0.027. XRPD studies suggested slight crystalline change in drug. Dissolution rate obtained from Hyp nanocrystals were markedly higher than pure Hyp. The nanocrystals exhibited enhanced Cmax (7.42 ± 0.73 versus 3.80 ± 0.66 mg/L) and AUC0 − t (193.61 ± 16.30 versus 91.92 ± 17.95 mg·h/L) with a 210.63% increase in relative bioavailability. Hyp nanocrystals exhibited significantly greater anti-HBV activity than Hyp. These results suggested that the developed nanocrystals formulation had a great potential as a viable approach to enhance the bioavailability of Hyp.


Drug Development and Industrial Pharmacy | 2015

Influence of drug physicochemical characteristics on in vitro transdermal absorption of hydrophobic drug nanosuspensions

Chengying Shen; Rui-sheng Li; Baode Shen; Gang Shen; Li-qiang Wang; Juan Zheng; Xiao-rong Li; Hong-yan Min; Jin Han; Hailong Yuan

Abstract The purpose of this paper was to study the influence of drug physicochemical characteristics on in vitro transdermal absorption of hydrophobic drug nanosuspensions. Four drug nanosuspensions were produced by high-pressure homogenization technique, which were the same in stabilizer and similar in particle size. Differential scanning calorimetry and powder X-ray diffraction analysis showed that the crystalline state of the nanocrystals did not change. In vitro permeation study demonstrated that the drug nanosuspensions have a higher rate of permeation that ranged from 1.69- to 3.74-fold compared to drug microsuspensions. Correlation analysis between drug physicochemical properties and Jss revealed that log P and pKa were factors that influenced the in vitro transdermal absorption of hydrophobic drug nanosuspensions, and drugs with a log P value around 3 and a higher pKa value (when pKa < pH+2) would gain higher Jss in this paper.

Collaboration


Dive into the Hailong Yuan's collaboration.

Top Co-Authors

Avatar

Baode Shen

Jiangxi University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengying Shen

Chengdu University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

He Xu

Chengdu University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Gang Shen

Chengdu University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Yu

Jiangxi University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Jinxia Bai

Chengdu University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Shixiao Jin

Chengdu University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Xiao Liu

Chengdu University of Traditional Chinese Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge