Haim Weissman
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haim Weissman.
Journal of the American Chemical Society | 2014
Yaron Tidhar; Eran Edri; Haim Weissman; Dorin Zohar; Gary Hodes; David Cahen; Boris Rybtchinski; Saar Kirmayer
Hybrid organic/lead halide perovskites are promising materials for solar cell fabrication, resulting in efficiencies up to 18%. The most commonly studied perovskites are CH3NH3PbI3 and CH3NH3PbI3-xClx where x is small. Importantly, in the latter system, the presence of chloride ion source in the starting solutions used for the perovskite deposition results in a strong increase in the overall charge diffusion length. In this work we investigate the crystallization parameters relevant to fabrication of perovskite materials based on CH3NH3PbI3 and CH3NH3PbBr3. We find that the addition of PbCl2 to the solutions used in the perovskite synthesis has a remarkable effect on the end product, because PbCl2 nanocrystals are present during the fabrication process, acting as heterogeneous nucleation sites for the formation of perovskite crystals in solution. We base this conclusion on SEM studies, synthesis of perovskite single crystals, and on cryo-TEM imaging of the frozen mother liquid. Our studies also included the effect of different substrates and substrate temperatures on the perovskite nucleation efficiency. In view of our findings, we optimized the procedures for solar cells based on lead bromide perovskite, resulting in 5.4% efficiency and Voc of 1.24 V, improving the performance in this class of devices. Insights gained from understanding the hybrid perovskite crystallization process can aid in rational design of the polycrystalline absorber films, leading to their enhanced performance.
Journal of the American Chemical Society | 2009
Elisha Krieg; Elijah Shirman; Haim Weissman; Eyal Shimoni; Sharon G. Wolf; Iddo Pinkas; Boris Rybtchinski
Design of an extensive supramolecular three-dimensional network that is both robust and adaptive represents a significant challenge. The molecular system PP2b based on a perylene diimide chromophore (PDI) decorated with polyethylene glycol groups self-assembles in aqueous media into extended supramolecular fibers that form a robust three-dimensional network resulting in gelation. The self-assembled systems were characterized by cryo-TEM, cryo-SEM, and rheological measurements. The gel possesses exceptional robustness and multiple stimuli-responsiveness. Reversible charging of PP2b allows for switching between the gel state and fluid solution that is accompanied by switching on and off the materials birefringence. Temperature triggered deswelling of the gel leads to the (reversible) expulsion of a large fraction of the aqueous solvent. The dual sensibility toward chemical reduction and temperature with a distinct and interrelated response to each of these stimuli is pertinent to applications in the area of adaptive functional materials. The gel also shows strong absorption of visible light and good exciton mobility (elucidated using femtosecond transient absorption), representing an advantageous light harvesting system.
Nature Nanotechnology | 2011
Elisha Krieg; Haim Weissman; Elijah Shirman; Eyal Shimoni; Boris Rybtchinski
Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability1, but the majority of noncovalent systems are too fragile to be competitive with covalent materials for practical applications, despite significant attempts to develop robust noncovalent arrays1,2,3,4. Here, we report nanostructured supramolecular membranes prepared from fibrous assemblies5 in water. The membranes are robust due to strong hydrophobic interactions6,7, allowing their application in the size-selective separation of both metal and semiconductor nanoparticles. A thin (12 µm) membrane is used for filtration (∼5 nm cutoff), and a thicker (45 µm) membrane allows for size-selective chromatography in the sub-5 nm domain. Unlike conventional membranes, our supramolecular membranes can be disassembled using organic solvent, cleaned, reassembled and reused multiple times. Supramolecular membranes prepared from fibrous assemblies in water can be disassembled in organic solvent after use and then cleaned, reassembled and reused numerous times.
Chemistry: A European Journal | 2011
Yaron Tidhar; Haim Weissman; Sharon G. Wolf; Antonino Gulino; Boris Rybtchinski
Most molecular self-assembly strategies involve equilibrium systems, leading to a single thermodynamic product as a result of weak, reversible non-covalent interactions. Yet, strong non-covalent interactions may result in non-equilibrium self-assembly, in which structural diversity is achieved by forming several kinetic products based on a single covalent building block. We demonstrate that well-defined amphiphilic molecular systems based on perylene diimide/peptide conjugates exhibit kinetically controlled self-assembly in aqueous medium, enabling pathway-dependent assembly sequences, in which different organic nanostructures are evolved in a stepwise manner. The self-assembly process was characterized using UV/Vis circular dichroism (CD) spectroscopy, and cryogenic transmission electron microscopy (cryo-TEM). Our findings show that pathway-controlled self-assembly may significantly broaden the methodology of non-covalent synthesis.
Journal of the American Chemical Society | 2008
Jonathan Baram; Elijah Shirman; Netanel Ben-Shitrit; Alona Ustinov; Haim Weissman; Iddo Pinkas; Sharon G. Wolf; Boris Rybtchinski
Self-assembling systems, whose structure and function can be reversibly controlled in situ are of primary importance for creating multifunctional supramolecular arrays and mimicking the complexity of natural systems. Herein we report on photofunctional fibers self-assembled from perylene diimide cromophores, in which interactions between aromatic monomers can be attenuated through their reduction to anionic species that causes fiber fission. Oxidation with air restores the fibers. The sequence represents reversible supramolecular depolymerization-polymerization in situ and is accompanied by a reversible switching of photofunction.
Journal of the American Chemical Society | 2010
Prakash P. Neelakandan; Zhengzheng Pan; Mahesh Hariharan; Yan Zheng; Haim Weissman; Boris Rybtchinski; Frederick D. Lewis
The self-assembly of DNA dumbbell conjugates possessing hydrophobic perylenediimide (PDI) linkers separated by an eight-base pair A-tract has been investigated. Cryo-TEM images obtained from dilute solutions of the dumbbell in aqueous buffer containing 100 mM NaCl show the presence of structures corresponding to linear end-to-end assemblies of 10-30 dumbbell monomers. The formation of assemblies of this size is consistent with analysis of the UV-vis and fluorescence spectra of these solutions for the content of PDI monomer and dimer chromophores. Assembly size is dependent upon the concentration of dumbbell and salt as well as the temperature. Kinetic analysis of the assembly process by means of salt-jump stopped-flow measurements shows that it occurs by a salt-triggered isodesmic mechanism in which the rate constants for association and dissociation in 100 mM NaCl are 3.2 × 10(7) M(-1)s(-1) and 1.0 s(-1), respectively, faster than the typical rate constants for DNA hybridization. TEM and AFM images of samples deposited from solutions having higher concentrations of dumbbell and NaCl display branched assemblies with linear regions >1 μm in length and diameters indicative of the formation of small bundles of dumbbell end-to-end assemblies. These observations provide the first example of the use of hydrophobic association for the assembly of small DNA duplex conjugates into supramolecular polymers and larger branched aggregates.
Journal of Physical Chemistry B | 2008
Elijah Shirman; Alona Ustinov; Netanel Ben-Shitrit; Haim Weissman; Mark A. Iron; Revital Cohen; Boris Rybtchinski
Perylene diimide (PDI) bearing polyethylene glycol substituents at the imide positions was reduced in water with sodium dithionite to produce an aromatic dianion. The latter is stable for months in deoxygenated aqueous solutions, in contrast to all known aromatic dianions which readily react with water. Such stability is due to extensive electron delocalization and the aromatic character of the dianion, as evidenced by spectroscopic and theoretical studies. The dianion reacts with oxygen to restore the parent neutral compound, which can be reduced again in an inert atmosphere with sodium dithionite to give the dianion. Such reversible charging renders PDIs useful for controlled electron storage and release in aqueous media. Simple preparation of the dianion, reversible charging, high photoredox power, and stability in water can lead to development of new photofunctional and electron transfer systems in the aqueous phase.
Journal of the American Chemical Society | 2011
Alona Ustinov; Haim Weissman; Elijah Shirman; Iddo Pinkas; Xiaobing Zuo; Boris Rybtchinski
Self-assembly in aqueous medium is of primary importance and widely employs hydrophobic interactions. Yet, unlike directional hydrogen bonds, hydrophobic interactions lack directionality, making difficult rational self-assembly design. Directional hydrophobic motif would significantly enhance rational design in aqueous self-assembly, yet general approaches to such interactions are currently lacking. Here, we show that pairwise directional hydrophobic/π-stacking interactions can be designed using well-defined sterics and supramolecular multivalency. Our system utilizes a hexasubstituted benzene scaffold decorated with 3 (compound 1) or 6 (compound 2) amphiphilc perylene diimides. It imposes a pairwise self-assembly mode, leading to well-defined supramolecular polymers in aqueous medium. the assemblies were characterized using cryogenic electron microscopy, small-angle X-ray scattering, optical spectroscopy, and EPR. Supramolecular polymerization studies in the case of 2 revealed association constants in 10(8) M(-1) range, and significant enthalpic contribution to the polymerization free energy. The pairwise PDI motif enables exciton confinement and localized emission in the polymers based on 1 and 2s unique photonic behavior, untypical of the extended π-stacked systems. Directional pairwise hydrophobic interactions introduce a novel strategy for rational design of noncovalent assemblies in aqueous medium, and bring about a unique photofunction.
Journal of Organic Chemistry | 2009
Aaron D. Finke; Eric C. Elleby; Michael J. Boyd; Haim Weissman; Jeffrey S. Moore
Substoichiometric amounts of ZnCl(2) promote the room temperature, Pd/P(t-Bu)(3)-catalyzed cross-coupling of aryl bromides with alkynes. Pd(I) dimer 1 is demonstrated to be a particularly active precatalyst for this reaction. The reaction is general for a wide variety of aryl bromides.
Angewandte Chemie | 2015
William J. Ramsay; Filip T. Szczypiński; Haim Weissman; Tanya K. Ronson; Maarten M. J. Smulders; Boris Rybtchinski; Jonathan R. Nitschke
Metal-organic self-assembly has proven to be of great use in constructing structures of increasing size and intricacy, but the largest assemblies lack the functions associated with the ability to bind guests. Here we demonstrate the self-assembly of two simple organic molecules with Cd(II) and Pt(II) into a giant heterometallic supramolecular cube which is capable of binding a variety of mono- and dianionic guests within an enclosed cavity greater than 4200 Å(3) . Its structure was established by X-ray crystallography and cryogenic transmission electron microscopy. This cube is the largest discrete abiological assembly that has been observed to bind guests in solution; cavity enclosure and coulombic effects appear to be crucial drivers of host-guest chemistry at this scale. The degree of cavity occupancy, however, appears less important: the largest guest studied, bound the most weakly, occupying only 11 % of the host cavity.