Haimei Zheng
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haimei Zheng.
Science | 2009
Haimei Zheng; Rachel K. Smith; Young-wook Jun; Christian Kisielowski; U. Dahmen; A. Paul Alivisatos
Mergers and Acquisitions The crystallization of small molecules or polymers is often described in terms of a nucleation stage, where initial clusters form, followed by a distinct growth stage. Growth can come from the addition of unbound molecules, or through “Ostwald ripening” where larger crystals grow at the expense of smaller ones due to thermodynamic effects. Zheng et al. (p. 1309) studied the growth of platinum nanocrystals inside a transmission electron microscope using a special liquid cell, allowing observation of crystal growth in situ. Both monomer addition to growing particles and the coalescence of two particles were observed. The specific growth mechanism appeared to be governed by the size of each of the particles. The combination of growth processes makes it possible for an initially broad distribution of particles to narrow into an almost uniform one. Transmission electron microscopy provides details of the growth mechanisms of platinum nanocrystals in solution. Understanding of colloidal nanocrystal growth mechanisms is essential for the syntheses of nanocrystals with desired physical properties. The classical model for the growth of monodisperse nanocrystals assumes a discrete nucleation stage followed by growth via monomer attachment, but has overlooked particle-particle interactions. Recent studies have suggested that interactions between particles play an important role. Using in situ transmission electron microscopy, we show that platinum nanocrystals can grow either by monomer attachment from solution or by particle coalescence. Through the combination of these two processes, an initially broad size distribution can spontaneously narrow into a nearly monodisperse distribution. We suggest that colloidal nanocrystals take different pathways of growth based on their size- and morphology-dependent internal energies.
Nano Letters | 2009
Wanli Ma; Joseph M. Luther; Haimei Zheng; Yue Wu; A. Paul Alivisatos
We report solar cells based on highly confined nanocrystals of the ternary compound PbS(x)Se(1-x). Crystalline, monodisperse alloyed nanocrystals are obtained using a one-pot, hot injection reaction. Rutherford back scattering and energy-filtered transmission electron microscopy suggest that the S and Se anions are uniformly distributed in the alloy nanoparticles. Photovoltaic devices made using ternary nanoparticles are more efficient than either pure PbS or pure PbSe based nanocrystal devices.
Science | 2012
Hong-Gang Liao; Likun Cui; Stephen Whitelam; Haimei Zheng
Growing in Liquid The ability to control the growth of materials at the nanometer scale is key to nanotechnology. Materials grown in liquids, however, are difficult to track on a particle-by-particle basis during growth. Two studies used an in situ liquid cell to follow the formation of larger nanoparticles or nanorods grown in solvents using high-resolution transmission electron microscopes. Liao et al. (p. 1011) watched platinum iron nanorods form from kinked chains of connected nanoparticles that gradually reoriented and straightened to form rigid rods. Li et al. (p. 1014) observed the coalescence of iron oxyhydroxide nanoparticles through an oriented attachment mechanism, whereby two similar particles rotated until their corresponding crystal lattices aligned. An in situ liquid stage is used to study the formation of nanowires from solution in a transmission electron microscope. The growth of colloidal nanocrystal architectures by nanoparticle attachment is frequently reported as an alternative to the conventional growth by monomer attachment. However, the mechanism whereby nanoparticle attachment proceeds microscopically remains unclear. We report real-time transmission electron microscopy (TEM) imaging of the solution growth of Pt3Fe nanorods from nanoparticle building blocks. Observations revealed growth of winding polycrystalline nanoparticle chains by shape-directed nanoparticle attachment followed by straightening and orientation and shape corrections to yield single-crystal nanorods. Tracking nanoparticle growth trajectories allowed us to distinguish the force fields exerted by single nanoparticles and nanoparticle chains. Such quantification of nanoparticle interaction and understanding the growth pathways are important for the design of hierarchical nanomaterials and controlling nanocrystal self-assembly for functional devices.
Journal of the American Chemical Society | 2009
Joseph M. Luther; Haimei Zheng; Bryce Sadtler; A. Paul Alivisatos
We show that nanocrystals (NCs) with well-established synthetic protocols for high shape and size monodispersity can be used as templates to independently control the NC composition through successive cation exchange reactions. Chemical transformations like cation exchange reactions overcome a limitation in traditional colloidal synthesis, where the NC shape often reflects the inherent symmetry of the underlying lattice. Specifically we show that full or partial interconversion between wurtzite CdS, chalcocite Cu(2)S, and rock salt PbS NCs can occur while preserving anisotropic shapes unique to the as-synthesized materials. The exchange reactions are driven by disparate solubilites between the two cations by using ligands that preferentially coordinate to either monovalent or divalent transition metals. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong two-dimensional quantum confinement, as well as for optoelectronic applications. In NC heterostructures containing segments of different materials, the exchange reaction can be made highly selective for just one of the components of the heterostructure. Thus, through precise control over ion insertion and removal, we can obtain interesting CdS|PbS heterostructure nanorods, where the spatial arrangement of materials is controlled through an intermediate exchange reaction.
Journal of the American Chemical Society | 2009
Bryce Sadtler; Denis Demchenko; Haimei Zheng; Steven M. Hughes; Maxwell G. Merkle; U. Dahmen; Lin-Wang Wang; A. Paul Alivisatos
The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper(I) (Cu(+)) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu(2)S) grows inward from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver(I) (Ag(+)) exchange in CdS nanorods where nonselective nucleation of silver sulfide (Ag(2)S) occurs (Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L.-W.; Alivisatos, A. P. Science 2007, 317, 355-358). From interface formation energies calculated for several models of epitaxial connections between CdS and Cu(2)S or Ag(2)S, we infer the relative stability of each interface during the nucleation and growth of Cu(2)S or Ag(2)S within the CdS nanorods. The epitaxial attachments of Cu(2)S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. Additionally, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.
Science | 2014
Hong-Gang Liao; Danylo Zherebetskyy; Huolin L. Xin; Cory Czarnik; Peter Ercius; Hans Elmlund; Ming Pan; Lin Wang Wang; Haimei Zheng
Watching platinum nanocube growth Size and shape drive the properties of metal nanoparticles. Understanding the factors that affect their growth is central to making use of the particles in a range of applications. Liao et al. tracked the growth of platinum nanoparticle shapes at high resolution using state-of-the-art liquid cells for in situ monitoring inside an electron microscope. The authors tracked changes in the growth rates at different crystal facets caused by differences in the mobility of the capping ligand. Science, this issue p. 916 Observation of atomic facet development during platinum nanocube growth reveals shape control. An understanding of how facets of a nanocrystal develop is critical for controlling nanocrystal shape and designing novel functional materials. However, the atomic pathways of nanocrystal facet development are mostly unknown because of the lack of direct observation. We report the imaging of platinum nanocube growth in a liquid cell using transmission electron microscopy with high spatial and temporal resolution. The growth rates of all low index facets are similar until the {100} facets stop growth. The continuous growth of the rest facets leads to a nanocube. Our calculation shows that the much lower ligand mobility on the {100} facets is responsible for the arresting of {100} growing facets. These findings shed light on nanocrystal shape-control mechanisms and future design of nanomaterials.
Nano Letters | 2009
Haimei Zheng; Shelley A. Claridge; Andrew M. Minor; A. Paul Alivisatos; U. Dahmen
We have directly observed motion of inorganic nanoparticles during fluid evaporation using a transmission electron microscope. Tracking real-time diffusion of both spherical (5-15 nm) and rod-shaped (5 x 10 nm) gold nanocrystals in a thin film of water-15% glycerol reveals complex movements, such as rolling motions coupled to large-step movements and macroscopic violations of the Stokes-Einstein relation for diffusion. As drying patches form during the final stages of evaporation, particle motion is dominated by the nearby retracting liquid front.
Journal of the American Chemical Society | 2009
Jungwon Park; Haimei Zheng; Young-wook Jun; A. Paul Alivisatos
Anion exchange with S was performed on ZnO colloidal nanoparticles. The resulting hollow ZnS nanoparticles are crystal whose shape is dictated by the initial ZnO. Crystallographic and elemental analyses provide insight into the mechanism of the anion exchange.
Science | 2011
Haimei Zheng; Jessy B. Rivest; Timothy A. Miller; Bryce Sadtler; Aaron M. Lindenberg; Michael F. Toney; Lin-Wang Wang; C. Kisielowski; A. Paul Alivisatos
Structural fluctuations between two equilibrium phases are observed in copper sulfide nanoparticles. The study of first-order structural transformations has been of great interest to scientists in many disciplines. Expectations from phase-transition theory are that the system fluctuates between two equilibrium structures near the transition point and that the region of transition broadens in small crystals. We report the direct observation of structural fluctuations within a single nanocrystal using transmission electron microscopy. We observed trajectories of structural transformations in individual nanocrystals with atomic resolution, which reveal details of the fluctuation dynamics, including nucleation, phase propagation, and pinning of structural domains by defects. Such observations provide crucial insight for the understanding of microscopic pathways of phase transitions.
Applied Physics Letters | 2007
Ying-Hao Chu; T. Zhao; M. P. Cruz; Q. Zhan; Pei-Ling Yang; Lane W. Martin; Mark Huijben; Chan-Ho Yang; F. Zavaliche; Haimei Zheng; R. Ramesh
Ferroelectric size effects in multiferroic BiFeO3 have been studied using a host of complementary measurements. The structure of such epitaxial films has been investigated using atomic force microscopy, transmission electron microscopy, and x-ray diffraction. The crystal structure of the films has been identified as a monoclinic phase, which suggests that the polarization direction is close to ⟨111⟩. Such behavior has also been confirmed by piezoforce microscopy measurements. That also reveals that the ferroelectricity is down to at least 2 nm