Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haiming Zhu is active.

Publication


Featured researches published by Haiming Zhu.


Nature Materials | 2015

Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors

Haiming Zhu; Yongping Fu; Fei Meng; Xiaoxi Wu; Zizhou Gong; Qi Ding; Martin V. Gustafsson; M. Tuan Trinh; Song Jin; X.-Y. Zhu

The remarkable performance of lead halide perovskites in solar cells can be attributed to the long carrier lifetimes and low non-radiative recombination rates, the same physical properties that are ideal for semiconductor lasers. Here, we show room-temperature and wavelength-tunable lasing from single-crystal lead halide perovskite nanowires with very low lasing thresholds (220 nJ cm(-2)) and high quality factors (Q ∼ 3,600). The lasing threshold corresponds to a charge carrier density as low as 1.5 × 10(16) cm(-3). Kinetic analysis based on time-resolved fluorescence reveals little charge carrier trapping in these single-crystal nanowires and gives estimated lasing quantum yields approaching 100%. Such lasing performance, coupled with the facile solution growth of single-crystal nanowires and the broad stoichiometry-dependent tunability of emission colour, makes lead halide perovskites ideal materials for the development of nanophotonics, in parallel with the rapid development in photovoltaics from the same materials.


Nature Communications | 2015

Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

Yu Zhong; M. Tuan Trinh; Rongsheng Chen; Geoffrey E. Purdum; Petr P. Khlyabich; Melda Sezen; Seokjoon Oh; Haiming Zhu; Brandon Fowler; Boyuan Zhang; Wei Wang; Chang-Yong Nam; Charles T. Black; Michael L. Steigerwald; Yueh-Lin Loo; Fay Ng; X.-Y. Zhu; Colin Nuckolls

Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor−acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.


Journal of the American Chemical Society | 2015

Trap states in lead iodide perovskites.

Xiaoxi Wu; M. Tuan Trinh; Daniel Niesner; Haiming Zhu; Zachariah M. Norman; Jonathan S. Owen; Omer Yaffe; Bryan Kudisch; X.-Y. Zhu

Recent discoveries of highly efficient solar cells based on lead iodide perovskites have led to a surge in research activity on understanding photo carrier generation in these materials, but little is known about trap states that may be detrimental to solar cell performance. Here we provide direct evidence for hole traps on the surfaces of three-dimensional (3D) CH3NH3PbI3 perovskite thin films and excitonic traps below the optical gaps in these materials. The excitonic traps possess weak optical transition strengths, can be populated from the relaxation of above gap excitations, and become more significant as dimensionality decreases from 3D CH3NH3PbI3 to two-dimensional (2D) (C4H9NH3I)2(CH3NH3I)(n-1)(PbI2)(n) (n = 1, 2, 3) perovskites and, within the 2D family, as n decreases from 3 to 1. We also show that the density of excitonic traps in CH3NH3PbI3 perovskite thin films grown in the presence of chloride is at least one-order of magnitude lower than that grown in the absence of chloride, thus explaining a widely known mystery on the much better solar cell performance of the former. The trap states are likely caused by electron-phonon coupling and are enhanced at surfaces/interfaces where the perovskite crystal structure is most susceptible to deformation.


Science | 2016

Screening in crystalline liquids protects energetic carriers in hybrid perovskites

Haiming Zhu; Kiyoshi Miyata; Yongping Fu; Jue Wang; Prakriti P. Joshi; Daniel Niesner; Kristopher W. Williams; Song Jin; X.-Y. Zhu

Hybrid lead halide perovskites exhibit carrier properties that resemble those of pristine nonpolar semiconductors despite static and dynamic disorder, but how carriers are protected from efficient scattering with charged defects and optical phonons is unknown. Here, we reveal the carrier protection mechanism by comparing three single-crystal lead bromide perovskites: CH3NH3PbBr3, CH(NH2)2PbBr3, and CsPbBr3. We observed hot fluorescence emission from energetic carriers with ~102-picosecond lifetimes in CH3NH3PbBr3 or CH(NH2)2PbBr3, but not in CsPbBr3. The hot fluorescence is correlated with liquid-like molecular reorientational motions, suggesting that dynamic screening protects energetic carriers via solvation or large polaron formation on time scales competitive with that of ultrafast cooling. Similar protections likely exist for band-edge carriers. The long-lived energetic carriers may enable hot-carrier solar cells with efficiencies exceeding the Shockley-Queisser limit.


Nano Letters | 2016

Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability

Yongping Fu; Haiming Zhu; Alex W. Schrader; Dong Liang; Qi Ding; Prakriti P. Joshi; Leekyoung Hwang; X.-Y. Zhu; Song Jin

The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500-2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing under ∼10(8) shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI3 (∼10(7) laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI3 and (FA,MA)Pb(I,Br)3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.


ACS Nano | 2016

Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)

Yongping Fu; Haiming Zhu; Constantinos C. Stoumpos; Qi Ding; Jue Wang; Mercouri G. Kanatzidis; X.-Y. Zhu; Song Jin

Lead halide perovskite nanowires (NWs) are emerging as a class of inexpensive semiconductors with broad bandgap tunability for optoelectronics, such as tunable NW lasers. Despite exciting progress, the current organic-inorganic hybrid perovskite NW lasers suffer from limited tunable wavelength range and poor material stability. Herein, we report facile solution growth of single-crystal NWs of inorganic perovskite CsPbX3 (X = Br, Cl) and their alloys [CsPb(Br,Cl)3] and a low-temperature vapor-phase halide exchange method to convert CsPbBr3 NWs into perovskite phase CsPb(Br,I)3 alloys and metastable CsPbI3 with well-preserved perovskite crystal lattice and NW morphology. These single crystalline NWs with smooth end facets and subwavelength dimensions are ideal Fabry-Perot cavities for NW lasers. Optically pumped tunable lasing across the entire visible spectrum (420-710 nm) is demonstrated at room temperature from these NWs with low lasing thresholds and high-quality factors. Such highly efficient lasing similar to what can be achieved with organic-inorganic hybrid perovskites indicates that organic cation is not essential for light emission application from these lead halide perovskite materials. Furthermore, the CsPbBr3 NW lasers show stable lasing emission with no measurable degradation after at least 8 h or 7.2 × 10(9) laser shots under continuous illumination, which are substantially more robust than their organic-inorganic counterparts. The Cs-based perovskites offer a stable material platform for tunable NW lasers and other nanoscale optoelectronic devices.


Journal of the American Chemical Society | 2015

Charge Transfer Excitons at van der Waals Interfaces.

X.-Y. Zhu; Nicholas R. Monahan; Zizhou Gong; Haiming Zhu; Kristopher W. Williams; Cory A. Nelson

The van der Waals interfaces of molecular donor/acceptor or graphene-like two-dimensional (2D) semiconductors are central to concepts and emerging technologies of light-electricity interconversion. Examples include, among others, solar cells, photodetectors, and light emitting diodes. A salient feature in both types of van der Waals interfaces is the poorly screened Coulomb potential that can give rise to bound electron-hole pairs across the interface, i.e., charge transfer (CT) or interlayer excitons. Here we address common features of CT excitons at both types of interfaces. We emphasize the competition between localization and delocalization in ensuring efficient charge separation. At the molecular donor/acceptor interface, electronic delocalization in real space can dictate charge carrier separation. In contrast, at the 2D semiconductor heterojunction, delocalization in momentum space due to strong exciton binding may assist in parallel momentum conservation in CT exciton formation.


Advanced Materials | 2017

Organic Cations Might Not Be Essential to the Remarkable Properties of Band Edge Carriers in Lead Halide Perovskites

Haiming Zhu; M. Tuan Trinh; Jue Wang; Yongping Fu; Prakriti P. Joshi; Kiyoshi Miyata; Song Jin; X.-Y. Zhu

A charge carrier in a lead halide perovskite lattice is protected as a large polaron responsible for the remarkable photophysical properties, irrespective of the cation type. All-inorganic-based APbX3 perovskites may mitigate the stability problem for their applications in solar cells and other optoelectronics.


Nano Letters | 2017

Interfacial Charge Transfer Circumventing Momentum Mismatch at Two-Dimensional van der Waals Heterojunctions

Haiming Zhu; Jue Wang; Zizhou Gong; Young Duck Kim; James Hone; X.-Y. Zhu

Interfacial charge separation and recombination at heterojunctions of monolayer transition metal dichalcogenides (TMDCs) are of interest to two-dimensional optoelectronic technologies. These processes can involve large changes in parallel momentum vector due to the confinement of electrons and holes to the K valleys in each layer. Because these high-momentum valleys are usually not aligned across the interface of two TMDC monolayers, how parallel momentum is conserved in the charge separation or recombination process becomes a key question. Here we probe this question using the model system of a type-II heterojunction formed by MoS2 and WSe2 monolayers and the experimental technique of femtosecond pump-probe spectroscopy. Upon photoexcitation specifically of WSe2 at the heterojunction, we observe ultrafast (<40 fs) electron transfer from WSe2 to MoS2, independent of the angular alignment and thus momentum mismatch between the two TMDCs. The resulting interlayer charge transfer exciton decays via nonradiative recombination with rates varying by up to three-orders of magnitude from sample to sample but with no correlation with interlayer angular alignment. We suggest that the initial interfacial charge separation and the subsequent interfacial charge recombination processes circumvent momentum mismatch via excess electronic energy and via defect-mediated recombination, respectively.


Journal of the American Chemical Society | 2015

Strain-Induced Stereoselective Formation of Blue-Emitting Cyclostilbenes

Qishui Chen; M. Tuan Trinh; Daniel W. Paley; Molleigh B. Preefer; Haiming Zhu; Brandon Fowler; X.-Y. Zhu; Michael L. Steigerwald; Colin Nuckolls

We describe the synthesis of two conjugated macrocycles that are formed from the end-to-end linking of stilbenes. We have named these macrocycles cyclostilbenes. The two cyclostilbene isomers created in this study differ in the configuration of the double bond in their subunits. These macrocycles are formed selectively through a stepwise reductive elimination from a tetraplatinum precursor and subsequent photoisomerization. Single-crystal X-ray diffraction reveals the formation of channel architectures in the solid state that can be filled with guest molecules. The cyclostilbene macrocycles emit blue light with fluorescence quantum yields that are high (>50%) and have photoluminescence lifetimes of ∼0.8-1.5 ns. The breadth and large Stokes shift in fluorescence emission, along with broad excited-state absorption, result from strong electronic-vibronic coupling in the strained structures of the cyclostilbenes.

Collaboration


Dive into the Haiming Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Song Jin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yongping Fu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Niesner

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge