Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haining Zhu is active.

Publication


Featured researches published by Haining Zhu.


Oncogene | 2013

Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation

Hui Yang; Ying Liu; Feng Bai; Jin Ye Zhang; Shenghong Ma; Liu J; Xu Zd; Haining Zhu; Ling Zq; Dan Ye; Kun-Liang Guan; Yue Xiong

The TET (ten–eleven translocation) family of α-ketoglutarate (α-KG)-dependent dioxygenases catalyzes the sequential oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine, leading to eventual DNA demethylation. The TET2 gene is a bona fide tumor suppressor frequently mutated in leukemia, and TET enzyme activity is inhibited in IDH1/2-mutated tumors by the oncometabolite 2-hydroxyglutarate, an antagonist of α-KG, linking 5mC oxidation to cancer development. We report here that the levels of 5hmC are dramatically reduced in human breast, liver, lung, pancreatic and prostate cancers when compared with the matched surrounding normal tissues. Associated with the 5hmC decrease is the substantial reduction of the expression of all three TET genes, revealing a possible mechanism for the reduced 5hmC in cancer cells. The decrease of 5hmC was also observed during tumor development in different genetically engineered mouse models. Together, our results identify 5hmC as a biomarker whose decrease is broadly and tightly associated with tumor development.


Journal of Biological Chemistry | 2000

Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis.

Joy J. Goto; Haining Zhu; Raylene J. Sanchez; Aram M. Nersissian; Edith Butler Gralla; Joan Selverstone Valentine; Diane E. Cabelli

The presence of the copper ion at the active site of human wild type copper-zinc superoxide dismutase (CuZnSOD) is essential to its ability to catalyze the disproportionation of superoxide into dioxygen and hydrogen peroxide. Wild type CuZnSOD and several of the mutants associated with familial amyotrophic lateral sclerosis (FALS) (Ala4 → Val, Gly93 → Ala, and Leu38 → Val) were expressed inSaccharomyces cerevisiae. Purified metal-free (apoproteins) and various remetallated derivatives were analyzed by metal titrations monitored by UV-visible spectroscopy, histidine modification studies using diethylpyrocarbonate, and enzymatic activity measurements using pulse radiolysis. From these studies it was concluded that the FALS mutant CuZnSOD apoproteins, in direct contrast to the human wild type apoprotein, have lost their ability to partition and bind copper and zinc ions in their proper locations in vitro. Similar studies of the wild type and FALS mutant CuZnSOD holoenzymes in the “as isolated” metallation state showed abnormally low copper-to-zinc ratios, although all of the copper acquired was located at the native copper binding sites. Thus, the copper ions are properly directed to their native binding sites in vivo, presumably as a result of the action of the yeast copper chaperone Lys7p (yeast CCS). The loss of metal ion binding specificity of FALS mutant CuZnSODsin vitro may be related to their role in ALS.


Neurobiology of Aging | 2011

Nuclear localization sequence of FUS and induction of stress granules by ALS mutants

Jozsef Gal; Jiayu Zhang; David M. Kwinter; Jianjun Zhai; Hongge Jia; Jianhang Jia; Haining Zhu

Mutations in fused in sarcoma (FUS) have been reported to cause a subset of familial amyotrophic lateral sclerosis (ALS) cases. Wild-type FUS is mostly localized in the nuclei of neurons, but the ALS mutants are partly mislocalized in the cytoplasm and can form inclusions. We demonstrate that the C-terminal 32 amino acid residues of FUS constitute an effective nuclear localization sequence (NLS) as it targeted beta-galactosidase (LacZ, 116 kDa) to the nucleus. Deletion of or the ALS mutations within the NLS caused cytoplasmic mislocalization of FUS. Moreover, we identified the poly-A binding protein (PABP1), a stress granule marker, as an interacting partner of FUS. Large PABP1-positive cytoplasmic foci (i.e. stress granules) colocalized with the mutant FUS inclusions but were absent in wild-type FUS-expressing cells. Processing bodies, which are functionally related to stress granules, were adjacent to but not colocalized with the mutant FUS inclusions. Our results suggest that the ALS mutations in FUS NLS can impair FUS nuclear localization, induce cytoplasmic inclusions and stress granules, and potentially perturb RNA metabolism.


Journal of Biological Chemistry | 2007

Interaction between Familial Amyotrophic Lateral Sclerosis (ALS)-linked SOD1 Mutants and the Dynein Complex

Fujian Zhang; Anna-Lena Ström; Kei Fukada; Sangmook Lee; Lawrence J. Hayward; Haining Zhu

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive motor neuron death. More than 90 mutations in the copper-zinc superoxide dismutase (SOD1) gene cause a subset of familial ALS. Toxic properties have been proposed for the ALS-linked SOD1 mutants, but the nature of the toxicity has not been clearly specified. Cytoplasmic inclusion bodies containing mutant SOD1 and a number of other proteins are a pathological hallmark of mutant SOD1-mediated familial ALS, but whether such aggregates are toxic to motor neurons remains unclear. In this study, we identified a dynein subunit as a component of the mutant SOD1-containing high molecular weight complexes using proteomic techniques. We further demonstrated interaction and colocalization between dynein and mutant SOD1, but not normal SOD1, in cultured cells and also in G93A and G85R transgenic rodent tissues. Moreover, the interaction occurred early, prior to the onset of symptoms in the ALS animal models and increased over the disease progression. Motor neurons with long axons are particularly susceptible to defects in axonal transport. Our results demonstrate a direct “gain-of-interaction” between mutant SOD1 and dynein, which may provide insights into the mechanism by which mutant SOD1 could contribute to a defect in retrograde axonal transport or other dynein functions. The aberrant interaction is potentially critical to the formation of mutant SOD1 aggregates as well as the toxic cascades leading to motor neuron degeneration in ALS.


Journal of Neurochemistry | 2008

Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration.

J. Ramesh Babu; M. Lamar Seibenhener; Junmin Peng; Anna-Lena Ström; Robert J. Kemppainen; Nancy R. Cox; Haining Zhu; Michael C. Wooten; Maria T. Diaz-Meco; Jorge Moscat; Marie W. Wooten

The signaling adapter p62 plays a coordinating role in mediating phosphorylation and ubiquitin‐dependent trafficking of interacting proteins. However, there is little known about the physiologic role of this protein in brain. Here, we report age‐dependent constitutive activation of glycogen synthase kinase 3β, protein kinase B, mitogen‐activated protein kinase, and c‐Jun‐N‐terminal kinase in adult p62−/− mice resulting in hyperphosphorylated tau, neurofibrillary tangles, and neurodegeneration. Biochemical fractionation of p62−/− brain led to recovery of aggregated K63‐ubiquitinated tau. Loss of p62 was manifested by increased anxiety, depression, loss of working memory, and reduced serum brain‐derived neurotrophic factor levels. Our findings reveal a novel role for p62 as a chaperone that regulates tau solubility thereby preventing tau aggregation. This study provides a clear demonstration of an Alzheimer‐like phenotype in a mouse model in the absence of expression of human genes carrying mutations in amyloid‐beta protein precursor, presenilin, or tau. Thus, these findings provide new insight into manifestation of sporadic Alzheimer disease and the impact of obesity.


Molecular & Cellular Proteomics | 2005

Tube-Gel Digestion A Novel Proteomic Approach for High Throughput Analysis of Membrane Proteins

Xiaoning Lu; Haining Zhu

This study describes a new protein digestion protocol in which a variety of detergents can be used to solubilize membrane proteins and facilitate trypsin digestion with higher efficiency. In this protocol, proteins are dissolved in solutions containing various detergents and directly incorporated into a polyacrylamide gel matrix without electrophoresis. Detergents are subsequently eliminated from the gel matrix while proteins are still immobilized in the gel matrix. After in-gel digestion of proteins, LC-MS/MS is used to analyze the extracted peptides for protein identification. The uniqueness of the protocol is that it allows usage of a variety of detergents in the starting solution without interfering with LC-MS/MS analysis. We hereby demonstrate that different detergents, including ionic SDS, non-ionic Triton X-100 and n-octyl β-d-glucopyranoside, and zwitterionic CHAPS, can be used to achieve maximum solubilization of membrane proteins with minimal interference with LC-MS/MS analysis. Enhanced digestions, i.e. improved number and intensity of detected peptides, are also demonstrated for digestion-resistant proteins such as myoglobin, ubiquitin, and bacteriorhodopsin. An additional advantage of the Tube-Gel digestion protocol is that, even without electrophoresis separation, it allows high throughput analysis of complex protein mixtures when coupled with LC-MS/MS. The protocol was used to analyze a complex membrane protein mixture prepared from prostate cancer cells. The protocol involves only a single digestion and 2.5 h of LC-MS/MS analysis and identified 178 membrane proteins. In comparison, the same membrane fraction was resolved by SDS-PAGE, and 20 gel slices were excised and individually digested and analyzed by LC-MS/MS. The more elaborate effort demanded more than 50 h of LC-MS/MS analysis and identified 268 proteins. The new Tube-Gel digestion protocol is an alternative method for high throughput analysis of membrane proteins.


Journal of Neurochemistry | 2009

Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism

Jozsef Gal; Anna-Lena Ström; David M. Kwinter; Renee Kilty; Jiayu Zhang; Ping Shi; Weisi Fu; Marie W. Wooten; Haining Zhu

The p62/sequestosome 1 protein has been identified as a component of pathological protein inclusions in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). P62 has also been implicated in autophagy, a process of mass degradation of intracellular proteins and organelles. Autophagy is a critical pathway for degrading misfolded and/or damaged proteins, including the copper‐zinc superoxide dismutase (SOD1) mutants linked to familial ALS. We previously reported that p62 interacted with ALS mutants of SOD1 and that the ubiquitin‐association domain of p62 was dispensable for the interaction. In this study, we identified two distinct regions of p62 that were essential to its binding to mutant SOD1: the N‐terminal Phox and Bem1 (PB1) domain (residues 1–104) and a separate internal region (residues 178–224) termed here as SOD1 mutant interaction region (SMIR). The PB1 domain is required for appropriate oligomeric status of p62 and the SMIR is the actual region interacting with mutant SOD1. Within the SMIR, the conserved W184, H190 and positively charged R183, R186, K187, and K189 residues are critical to the p62–mutant SOD1 interaction as substitution of these residues with alanine resulted in significantly abolished binding. In addition, SMIR and the p62 sequence responsible for the interaction with LC3, a protein essential for autophagy activation, are independent of each other. In cells lacking p62, the existence of mutant SOD1 in acidic autolysosomes decreased, suggesting that p62 can function as an adaptor between mutant SOD1 and the autophagy machinery. This study provides a novel molecular mechanism by which mutant SOD1 can be recognized by p62 in an ubiquitin‐independent fashion and targeted for the autophagy–lysosome degradation pathway.


Journal of Biological Chemistry | 2007

p62 Accumulates and Enhances Aggregate Formation in Model Systems of Familial Amyotrophic Lateral Sclerosis

Jozsef Gal; Anna-Lena Ström; Renee Kilty; Fujian Zhang; Haining Zhu

Amyotrophic lateral sclerosis (ALS) is a progressive neurode-generative disease characterized by motor neuron death. A hallmark of the disease is the appearance of protein aggregates in the affected motor neurons. We have found that p62, a protein implicated in protein aggregate formation, accumulated progressively in the G93A mouse spinal cord. The accumulation of p62 was in parallel to the increase of polyubiquitinated proteins and mutant SOD1 aggregates. Immunostaining studies showed that p62, ubiquitin, and mutant SOD1 co-localized in the protein aggregates in affected cells in G93A mouse spinal cord. The p62 protein selectively interacted with familial ALS mutants, but not WT SOD1. When p62 was co-expressed with SOD1 in NSC34 cells, it greatly enhanced the formation of aggregates of the ALS-linked SOD1 mutants, but not wild-type SOD1. Cell viability was measured in the presence and absence of overexpressed p62, and the results suggest that the large aggregates facilitated by p62 were not directly toxic to cells under the conditions in this study. Deletion of the ubiquitin-association (UBA) domain of p62 significantly decreased the p62-facilitated aggregate formation, but did not completely inhibit it. Further protein interaction experiments also showed that the truncated p62 with the UBA domain deletion remained capable of interacting with mutant SOD1. The findings of this study show that p62 plays a critical role in forming protein aggregates in familial ALS, likely by linking misfolded mutant SOD1 molecules and other cellular proteins together.


Molecular & Cellular Proteomics | 2004

Mitochondrial Proteomic Analysis of a Cell Line Model of Familial Amyotrophic Lateral Sclerosis

Kei Fukada; Fujian Zhang; Alexis Vien; Neil R. Cashman; Haining Zhu

Mutations in copper-zinc superoxide dismutase (SOD1) have been linked to a subset of familial amytrophic lateral sclerosis (fALS), a fatal neurodegenerative disease characterized by progressive motor neuron death. An increasing amount of evidence supports that mitochondrial dysfunction and apoptosis activation play a critical role in the fALS etiology, but little is known about the mechanisms by which SOD1 mutants cause the mitochondrial dysfunction and apoptosis. In this study, we use proteomic approaches to identify the mitochondrial proteins that are altered in the presence of a fALS-causing mutant G93A-SOD1. A comprehensive characterization of mitochondrial proteins from NSC34 cells, a motor neuron-like cell line, was achieved by two independent proteomic approaches. Four hundred seventy unique proteins were identified in the mitochondrial fraction collectively, 75 of which are newly discovered proteins that previously had only been reported at the cDNA level. Two-dimensional gel electrophoresis was subsequently used to analyze the differences between the mitochondrial proteomes of NSC34 cells expressing wild-type and G93A-SOD1. Nine and 36 protein spots displayed elevated and suppressed abundance respectively in G93A-SOD1-expressing cells. The 45 spots were identified by MS, and they include proteins involved in mitochondrial membrane transport, apoptosis, the respiratory chain, and molecular chaperones. In particular, alterations in the post-translational modifications of voltage-dependent anion channel 2 (VDAC2) were found, and its relevance to regulating mitochondrial membrane permeability and activation of apoptotic pathways is discussed. The potential role of other proteins in the mutant SOD1-mediated fALS is also discussed. This study has produced a short list of mitochondrial proteins that may hold the key to the mechanisms by which SOD1 mutants cause mitochondrial dysfunction and neuronal death. It has laid the foundation for further detailed functional studies to elucidate the role of particular mitochondrial proteins, such as VDAC2, in the pathogenesis of familial ALS.


Cancer Research | 2006

Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells.

Beibei Zhu; Kei Fukada; Haining Zhu; Natasha Kyprianou

A proteomic analysis was pursued to identify new signaling effectors of transforming growth factor beta1 (TGF-beta1) that serve as potential intracellular effectors of its apoptotic action in human prostate cancer cells. The androgen-sensitive and TGF-beta-responsive human prostate cancer cells, LNCaP T beta RII, were used as in vitro model. In response to TGF-beta, significant posttranslational changes in two proteins temporally preceded apoptotic cell death. TGF-beta mediated the nuclear export of prohibitin, a protein involved in androgen-regulated prostate growth, to the cytosol in the LNCaP T beta RII cells. Cofilin, a protein involved in actin depolymerization, cell motility, and apoptosis, was found to undergo mitochondrial translocation in response to TGF-beta before cytochrome c release. Loss-of-function approaches (small interfering RNA) to silence prohibitin expression revealed a modest decrease in the apoptotic response to TGF-beta and a significant suppression in TGF-beta-induced cell migration. Silencing Smad4 showed that the cellular localization changes associated with prohibitin and cofilin action in response to TGF-beta are independent of Smad4 intracellular signaling.

Collaboration


Dive into the Haining Zhu's collaboration.

Top Co-Authors

Avatar

Jing Chen

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Jozsef Gal

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiayu Zhang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Shi

University of Kentucky

View shared research outputs
Researchain Logo
Decentralizing Knowledge