Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haiou Liu is active.

Publication


Featured researches published by Haiou Liu.


Cancer Research | 2011

Hepatitis B Virus Large Surface Antigen Promotes Liver Carcinogenesis by Activating the Src/PI3K/Akt Pathway

Haiou Liu; Jiejie Xu; Lei Zhou; Xiaojing Yun; Lin Chen; Shanshan Wang; Linlin Sun; Jianxin Gu

Of the three envelope glycoproteins encoded by hepatitis B virus (HBV) that are collectively referred to as HBV surface antigen (HBsAg), the large HBsAg (LHBs) glycoprotein is expressed preferentially in HBV-associated hepatocellular carcinoma. LHBs can act as an oncogene in transgenic mice, but how it contributes functionally to hepatocarcinogenesis remains unclear. In this study, we determined the molecular and functional roles of LHBs during HBV-associated hepatocarcinogenesis. LHBs increased tumor formation of hepatoma cells. Moreover, expression of LHBs but not other HBV envelope glycoproteins specifically promoted proliferation of hepatoma and hepatic cells in vitro. Mechanistic investigations revealed that these effects were caused by activation of the Src/PI3K/Akt pathway through proximal stimulation of PKCα/Raf1 signaling by LHBs. Proliferation induced by stable LHBs expression was associated with increased G(1)-S cell-cycle progression and apoptosis resistance mediated by Src kinase activation, as established in hepatocellular carcinoma clinical specimens. Importantly, LHBs-induced cellular proliferation and tumor formation were reversed by administration of the Src inhibitor saracatinib. Together, our findings suggest that LHBs promotes tumorigenesis of hepatoma cells by triggering a PKCα/Raf1 to Src/PI3K/Akt signaling pathway, revealing novel insights into the underlying mechanisms of HBV-associated hepatocarcinogenesis.


Gastroenterology | 2012

Hepatitis B Virus X Protein Confers Resistance of Hepatoma Cells to Anoikis by Up-regulating and Activating p21-Activated Kinase 1

Jiejie Xu; Haiou Liu; Lin Chen; Shanshan Wang; Lei Zhou; Xiaojing Yun; Linlin Sun; Jianxin Gu

BACKGROUND & AIMS Patients with chronic hepatitis B virus (HBV) infection are at risk for metastatic hepatocellular carcinoma (HCC). Metastatic cancer cells develop resistance to anoikis. The serine/threonine p21-activated kinase (PAK) 1 regulates cytoskeletal dynamics and protects cells from anoikis; it also promotes virus replication. We investigated the effects of PAK1 on anoikis resistance in human hepatoma cells and in mice. METHODS We transfected human hepatoma cells with pHBV1.3 (to mimic HBV replication) or plasmids encoding different HBV proteins; we performed colony formation and anoikis assays. We knocked down levels of PAK1 and Bcl2, or inhibited their activity, in hepatoma cells and quantified anoikis and growth of tumor xenografts in nude mice; we also measured anoikis of tumor cells isolated from ascites of the mice. We performed immunohistochemical analysis of PAK1 levels in HCC samples from patients. RESULTS Human hepatoma cells transfected with pHBV1.3 expressing hepatitis B virus X protein (HBx) underwent anchorage-independent proliferation, were resistant to anoikis, and had higher levels of Bcl2 than nontransfected cells. Expression of HBx increased mitochondrial levels of Bcl2 and PAK1, which interacted physically. Anoikis resistance of Huh7 and SK-Hep1 cells required PAK1 activity and Bcl2. Expression of HBx promoted growth of Huh7 xenograft tumors in mice; PAK1 knockdown reduced growth of these tumors in mice and anoikis of cells isolated from these tumors. In human HCC samples, increased levels of PAK1 correlated with poor prognosis, HBV infection, and portal vein tumor thrombosis. CONCLUSIONS The HBV protein HBx up-regulates PAK1, allows hepatoma cells to become resistant to anoikis, and promotes growth of aggressive xenograft tumors in mice. HBx induction of PAK1 might promote progression of HCC in patients with chronic HBV infection.


Cancer Science | 2012

Hepatitis B virus X protein promotes hepatoma cell invasion and metastasis by stabilizing Snail protein

Haiou Liu; Le Xu; Hongyong He; Yu Zhu; Jing Liu; Shanshan Wang; Lin Chen; Qian Wu; Jiejie Xu; Jianxin Gu

A high incidence of tumor recurrence and metastasis has been reported in hepatocellular carcinoma (HCC) patients with chronic hepatitis B virus (HBV) infection. Although the pathological relevance and significance of hepatitis B virus X protein (HBx) in HBV‐associated hepatocarcinogenesis attracted much attention in recent years, the role and molecular mechanism for HBx in hepatoma invasion and metastasis remains poorly understood. In the present study, we found that HBx expression could induce epithelial–mesenchymal transition in hepatoma and hepatic cells. This effect was shown due to stabilized Snail protein through activating the phosphatidylinositol 3‐kinase/protein kinase B/glycogen synthase kinase‐3β (PI3K/AKT/GSK‐3β) signal pathway by HBx expression. Functional studies revealed that HBx expression could enhance hepatoma cell migration and invasion in vitro. Moreover, stable HBx expression could also facilitate intrahepatic and distant lung metastasis of HCC in a nude mice tumor metastasis model in vivo. The correlation between increased PI3K/AKT/GSK‐3β signaling with elevated Snail protein level was also observed in HCC tumor tissues with intrahepatic metastasis or chronic HBV infection. These results revealed a novel function of HBx in promoting epithelial–mesenchymal transition through Snail protein stabilization by activating PI3K/AKT/GSK‐3β signaling, thus facilitating tumor invasion and metastasis during HCC progression. This could provide a putative molecular mechanism for tumor recurrence and metastasis in HBV‐associated HCC patients.


Nature Communications | 2015

EZH2-mediated loss of miR-622 determines CXCR4 activation in hepatocellular carcinoma

Haiou Liu; Yidong Liu; Weisi Liu; Weijuan Zhang; Jiejie Xu

The CXC chemokine receptor 4 (CXCR4) exerts a variety of functions at different steps of hepatocellular carcinoma (HCC) progression. The molecular mechanisms and therapeutic value of CXCR4 in the development of HCC remain undefined. Here we show that aberrant CXCR4 overexpression is associated with poor prognosis and aggressive characteristics of HCC. Suppression of CXCR4 activity via CXCR4 knockdown, AMD3100 or neutralizing antibody administration inhibits hepatoma cell tumorigenesis in vitro and in vivo. CXCR4 overexpression displays the opposite effects. Using Mir library screening we identify miR-622 as a regulator of CXCR4. Further studies show that miR-622 directly target the 3′ untranslated region of CXCR4 and is transcriptionally repressed by EZH2-induced H3K27 trimethylation and promoter methylation. EZH2/miR-622 promotes tumorigenesis through CXCR4. EZH2-mediated loss of miR-622 is found to correlate with CXCR4 overexpression and unfavourable prognosis in HCC patients. This study establishes EZH2/miR-622/CXCR4 as a potential adverse prognostic factor and therapeutic target for HCC patients.


Journal of Biological Chemistry | 2015

Decreased Expression of Hepatocyte Nuclear Factor 4α (Hnf4α)/MicroRNA-122 (miR-122) Axis in Hepatitis B Virus-associated Hepatocellular Carcinoma Enhances Potential Oncogenic GALNT10 Protein Activity

Qian Wu; Haiou Liu; Yidong Liu; Weisi Liu; Deng Pan; Weijuan Zhang; Liu Yang; Qiang Fu; Jiejie Xu; Jianxin Gu

Background: GALNT, the initial enzyme in mucin-type O-glycosylation, plays critical roles in cancer etiology. Results: GALNT10-induced cellular proliferation was associated with EGFR activation mediated by down-regulation of miR-122 in HBV-associated HCC. Conclusion: A regulatory pathway of Hnf4α/miR-122/GALNT10/EGFR may represent a possible mechanism underlying HBV-associated hepatocarcinogenesis. Significance: This finding provides a novel role for O-glycosylation in HCC pathogenesis. MicroRNA-122 (miR-122), a mammalian liver-specific miRNA, has been reported to play crucial roles in the control of diverse aspects of hepatic function and dysfunction, including viral infection and hepatocarcinogenesis. In this study, we explored the clinical significance, transcriptional regulation, and direct target of miR-122 in hepatitis B virus (HBV)-associated hepatocellular carcinoma. Reduced expression of miR-122 in patients with HBV-associated hepatocellular carcinoma was correlated with venous invasion and poor prognosis. Furthermore, UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase-10 (GALNT10) was identified as a bona fide target of miR-122 in hepatoma cells. Ectopic expression and knockdown studies showed that GALNT10 indeed promotes proliferation and apoptosis resistance of hepatoma cells in a glycosyltransferase-dependent manner. Critically, adverse correlation between miR-122 and GALNT10, a poor prognosticator of clinical outcome, was demonstrated in hepatoma patients. Hepatocyte nuclear factor 4α (Hnf4α), a liver-enriched transcription factor that activates miR-122 gene transcription, was suppressed in HBV-infected hepatoma cells. Chromatin immunoprecipitation assay showed significantly reduced association of Hnf4α with the miR-122 promoter in HBV-infected hepatoma cells. Moreover, GALNT10 was found to intensify O-glycosylation following signal activation of the epidermal growth factor receptor. In addition, in a therapeutic perspective, we proved that GALNT10 silencing increases sensitivity to sorafenib and doxorubicin challenge. In summary, our results reveal a novel Hnf4α/miR-122/GALNT10 regulatory pathway that facilitates EGF miR-122 activation and hepatoma growth in HBV-associated hepatocarcinogenesis.


PLOS ONE | 2013

Klotho Endows Hepatoma Cells with Resistance to Anoikis via VEGFR2/PAK1 Activation in Hepatocellular Carcinoma

Lin Chen; Haiou Liu; Jing Liu; Yu Zhu; Le Xu; Hongyong He; Heng Zhang; Shanshan Wang; Qian Wu; Weisi Liu; Yidong Liu; Deng Pan; Shifang Ren; Jiejie Xu; Jianxin Gu

Klotho was originally characterized as an aging suppressor gene that predisposed Klotho-deficient mice to premature aging-like syndrome. Although Klotho was recently reported to exhibit tumor suppressive properties during various malignant transformations, the functional role and molecular mechanism of Klotho in hepatocarcinogenesis remains poorly understood. In our present study, immunohistochemical Klotho staining levels in a clinical follow-up of 52 hepatoma patients were significantly associated with liver cirrhosis, tumor multiplicity and venous invasion. The overall survival rate of hepatoma patients with high Klotho expression was significantly lower than those patients with low Klotho expression. Moreover, Klotho overexpression increased cellular migration, anchorage-independent growth, and anoikis resistance in hepatoma cells. Klotho overexpression elevated p21-activated kinase 1 (PAK1) expression and shRNA-mediated PAK1 knockdown and kinase activity inhibition with kinase dead mutant PAK1 K299R coexpression or allosteric inhibitor IPA3 treatment reversed anoikis resistance in Klotho-overexpressed hepatoma cells. More importantly, the pivotal significance of upregulated VEGFR2 protein levels mediated by Klotho expression was confirmed by VEGFR2 inhibitor Axitinib and blocking antibody treatment in hepatoma cells. Axitinib treatment sensitized anoikis was reversed by constitutive active mutant PAK1 T423E coexpression in Klotho-overexpressed hepatoma cells. Conversely, knockdown of Klotho reduced VEGFR2/PAK1 dependent anoikis resistance, which could be reversed by PAK1 T423E. These results revealed a novel oncogenic function of Klotho in promoting anoikis resistance via activating VEGFR2/PAK1 signaling, thus facilitating tumor migration and invasion during hepatoma progression, which could provide a putative molecular mechanism for tumor metastasis.


PLOS ONE | 2014

Discovery of Specific Metastasis-Related N-Glycan Alterations in Epithelial Ovarian Cancer Based on Quantitative Glycomics

Xingwang Zhang; Yisheng Wang; Yifan Qian; Xin Wu; Zejian Zhang; Xijun Liu; Ran Zhao; Lei Zhou; Yuanyuan Ruan; Jiejie Xu; Haiou Liu; Shifang Ren; Congjian Xu; Jianxin Gu

Generally, most of ovarian cancer cannot be detected until large scale and remote metastasis occurs, which is the major cause of high mortality in ovarian cancer. Therefore, it is urgent to discover metastasis-related biomarkers for the detection of ovarian cancer in its occult metastasis stage. Altered glycosylation is a universal feature of malignancy and certain types of glycan structures are well-known markers for tumor progressions. Thus, this study aimed to reveal specific changes of N-glycans in the secretome of the metastatic ovarian cancer. We employed a quantitative glycomics approach based on metabolic stable isotope labeling to compare the differential N-glycosylation of secretome between an ovarian cancer cell line SKOV3 and its high metastatic derivative SKOV3-ip. Intriguingly, among total 17 N-glycans identified, the N-glycans with bisecting GlcNAc were all significantly decreased in SKOV3-ip in comparison to SKOV3. This alteration in bisecting GlcNAc glycoforms as well as its corresponding association with ovarian cancer metastatic behavior was further validated at the glycotransferase level with multiple techniques including real-time PCR, western blotting, transwell assay, lectin blotting and immunohistochemistry analysis. This study illustrated metastasis-related N-glycan alterations in ovarian cancer secretome in vitro for the first time, which is a valuable source for biomarker discovery as well. Moreover, N-glycans with bisecting GlcNAc shed light on the detection of ovarian cancer in early peritoneal metastasis stage which may accordingly improve the prognosis of ovarian cancer patients.


Cancer Science | 2013

Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells

Yu Zhu; Le Xu; Jianping Zhang; Xiaoyi Hu; Yujun Liu; Hankun Yin; Tao Lv; Heng Zhang; Li Liu; Huimin An; Haiou Liu; Jiejie Xu; Zongming Lin

Although multitargeted tyrosine kinase inhibitor sunitinib has been used as first‐line therapeutic agent against metastatic renal cell carcinoma (mRCC), the molecular mechanism and functional role per se for its therapeutic performance remains obscure. Our present study revealed that sunitinib‐treated RCC cells exhibit senescence characteristics including increased SA‐β‐gal activity, DcR2 and Dec1 expression, and senescence‐associated secretary phenotype (SASP) such as proinflammatory cytokines interleukin (IL)‐1α, IL‐6 and IL‐8 secretion. Moreover, sunitinib administration also led to cell growth inhibition, G1‐S cell cycle arrest and DNA damage response in RCC cells, suggesting therapeutic significance of sunitinib‐induced RCC cellular senescence. Mechanistic investigations indicated that therapy‐induced senescence (TIS) following sunitinib treatment mainly attributed to p53/Dec1 signaling activation mediated by Raf‐1/NF‐κB inhibition in vitro. Importantly, in vivo study showed tumor growth inhibition and prolonged overall survival were associated with increased p53 and Dec1 expression, decreased Raf‐1 and Ki67 staining, and upregulated SA‐β‐gal activity after sunitinib treatment. Immunohistochemistry analysis of tumor tissues from RCC patients receiving sunitinib neoadjuvant therapy confirmed the similar treating phenotype. Taken together, our findings suggested that sunitinib treatment performance could be attributable to TIS, depending on p53/Dec1 activation via inhibited Raf‐1/nuclear factor (NF)‐κB activity. These data indicated potential insights into therapeutic improvement with reinforcing TIS‐related performance or overcoming SASP‐induced resistance.


Glycobiology | 2013

N-acetylglucosaminyltransferase V confers hepatoma cells with resistance to anoikis through EGFR/PAK1 activation

Jing Liu; Haiou Liu; Weijuan Zhang; Qian Wu; Weisi Liu; Yidong Liu; Deng Pan; Jiejie Xu; Jianxin Gu

Elevated expression and activity of N-acetylglucosaminyltransferase V (Mgat5) in hepatocellular carcinoma (HCC) is a common early event involved in tumor invasion during hepatocarcinogenesis. A better understanding of the functional role and the molecular mechanism for Mgat5-targeted protein and downstream signaling pathway behind hepatoma invasion and metastasis is urgently needed. Here, we show that Mgat5 overexpression promoted anchorage-independent growth and inhibited anoikis in hepatoma cells. This effect was reversed by glycosyltransferase inactive mutant Mgat5 L188R transfection, α-mannosidase II inhibitor swainsonine treatment and N-acetyl glucosamine (GlcNAc) phosphotransferase (GPT) inhibitor tunicamycin administration. Mgat5 overexpression increased p21-activated kinase 1 (PAK1) expression and shRNA-mediated PAK1 knockdown and kinase inactivation with kinase dead mutant PAK1 K299R coexpression or allosteric inhibitor P21-activated kinase inhibitor III (IPA3) treatment reversed anoikis resistance in Mgat5-overexpressed hepatoma cells. Furthermore, Mgat5 overexpression upregulated β-1-6-GlcNAc branched N-glycosylation and following phosphorylation of epidermal growth factor receptor (EGFR) in hepatoma cells. EGFR tyrosine kinase inhibitors AG1478 and Iressa treatment declined anchorage-independent growth and anoikis resistance, which could be rescued by constitutive active mutant PAK1 T423E coexpression in Mgat5-overexpressed hepatoma cells. Conversely, knockdown of Mgat5 reduced EGFR/PAK1-dependent anoikis resistance, which could be reversed by PAK1 T423E. These results identified Mgat5-mediated β-1-6-GlcNAc branched N-glycosylation and following activation of EGFR as a potential novel upstream molecular event for PAK1-induced anoikis resistance in hepatoma cells, implicating that molecular targeted therapeutics against Mgat5/EGFR/PAK1 might open a new avenue for personalized medicine in advanced-stage HCC patients.


Cell Death & Differentiation | 2015

Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-κB pathway.

Weijuan Zhang; Haiou Liu; Weisi Liu; Yugang Liu; Jiejie Xu

Serine/threonine kinase family members p21-activated kinases (PAKs) are important regulators of cytoskeletal remodeling and cell motility in mononuclear phagocytic system, but their role in macrophage differentiation and polarization remains obscure. We have shown here that inflammatory stimuli induced PAK1 overexpression in human and murine macrophages. Elevated expression of PAK1 contributed to macrophage M1 polarization and lipopolysaccharide (LPS)-induced endotoxin shock. We further observed that epigenetic loss of microRNA let-7c due to enhancer of zeste homolog 2 (EZH2) upregulation determined PAK1 elevation and inflammatory phenotype in M1 macrophages. EZH2/let-7c/PAK1 axis promotes macrophage M1 polarization via NIK-IKK-NF-κB signaling. Moreover, pharmacological and genetic ablation with EZH2/let-7c/PAK1 axis blunted inflammatory phenotype in M1 macrophages. Critically, either myeloid-restricted PAK1 deletion (PAK1Lyz2cre) or pharmacological and genetic ablation with EZH2/let-7c/PAK1 signal resulted in resistance to LPS-induced endotoxin shock via blunting macrophage M1 polarization. PAK1, therefore, is an essential controller of inflammatory macrophage polarization, regulating immune responses against pathogenic stimuli.

Collaboration


Dive into the Haiou Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weisi Liu

Fudan University Shanghai Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Le Xu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge