Haiqi Chen
Population Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haiqi Chen.
Endocrinology | 2016
Haiqi Chen; Dolores D. Mruk; Will M. Lee; C. Yan Cheng
Planar cell polarity (PCP) proteins confer polarization of a field of cells (eg, elongating/elongated spermatids) within the plane of an epithelium such as the seminiferous epithelium of the tubule during spermatogenesis. In adult rat testes, Sertoli and germ cells were found to express PCP core proteins (eg, Van Gogh-like 2 [Vangl2]), effectors, ligands, and signaling proteins. Vangl2 expressed predominantly by Sertoli cells was localized at the testis-specific, actin-rich ectoplasmic specialization (ES) at the Sertoli-spermatid interface in the adluminal compartment and also Sertoli-Sertoli interface at the blood-testis barrier (BTB) and structurally interacted with actin, N-cadherin, and another PCP/polarity protein Scribble. Vangl2 knockdown (KD) by RNA interference in Sertoli cells cultured in vitro with an established tight junction-permeability barrier led to BTB tightening, whereas its overexpression using a full-length cDNA construct perturbed the barrier function. These changes were mediated through an alteration on the organization actin microfilaments at the ES in Sertoli cells, involving actin-regulatory proteins, epidermal growth factor receptor pathway substrate 8, actin-related protein 3, and Scribble, which in turn affected the function of adhesion protein complexes at the ES during the epithelial cycle of spermatogenesis. Using Polyplus in vivo-jetPEI reagent as a transfection medium to silence Vangl2 in the testis in vivo by RNA interference with high efficacy, Vangl2 KD led to changes in F-actin organization at the ES in the epithelium, impeding spermatid and phagosome transport and spermatid polarity, meiosis, and BTB dynamics. For instance, step 19 spermatids remained embedded in the epithelium alongside with step 9 and 10 spermatids in stages IX-X tubules. In summary, the PCP protein Vangl2 is an ES regulator through its effects on actin microfilaments in the testis.
The FASEB Journal | 2017
Ying Gao; Dolores D. Mruk; Haiqi Chen; Wing-Yee Lui; Will M. Lee; C. Yan Cheng
Laminin α2 is one of the constituent components of the basement membrane (BM) in adult rat testes. Earlier studies that used a mouse genetic model have shown that a deletion of laminin α2 impedes male fertility by disrupting ectoplasmic specialization (ES; a testis‐specific, actin‐rich anchoring junction) function along the length of Sertoli cell in the testis. This includes ES at the Sertoli cell‐elongating/elongated spermatid interface, which is known as apical ES and possibly the Sertoli‐Sertoli cell interface, known as basal ES, at the blood‐testis barrier (BTB). Studies have also illustrated that there is a local regulatory axis that functionally links cellular events of spermiation that occur near the luminal edge of tubule lumen at the apical ES and the basal ES/BTB remodeling near the BM at opposite ends of the seminiferous epithelium during the epithelial cycle, known as the apical ES‐BTβ‐BM axis. However, the precise role of BM in this axis remains unknown. Here, we show that laminin α2 in the BM serves as the crucial regulator in this axis as laminin α2, likely its 80‐kDa fragment from the C terminus, was found to be transported across the seminiferous epithelium at stages VIII‐IX of the epithelial cycle, from the BM to the luminal edge of the tubule, possibly being used to modulate apical ES restructuring at these stages. Of more importance, a knockdown of laminin α2 in Sertoli cells was shown to induce the Sertoli cell tight junction permeability barrier disruption via changes in localization of adhesion proteins at the tight junction and basal ES at the Sertoli cell BTB. These changes were found to be mediated by a disruption of F‐actin organization that was induced by changes in the spatiotemporal expression of actin binding/ regulatory proteins. Furthermore, laminin α2 knockdown also perturbed microtubule (MT) organization by considerable down‐regulation of MT polymerization via changes in the spatiotemporal expression of EB1 (end‐binding protein 1), a+TIP (MT plus‐end tracking protein). In short, laminin α2 in the BM seems to playa crucial role in the BTBBM axis by modulating BTB dynamics during spermatogenesis.—Gao, Y., Mruk, D., Chen, H., Lui, W.‐Y., Lee, W. M., Cheng, C. Y. Regulation of the blood‐testis barrier by a local axis in the testis: role of laminin α1 in the basement membrane. FASEB J. 31, 584–597 (2017). http://www.fasebj.org
Scientific Reports | 2016
Nan Li; Dolores D. Mruk; Haiqi Chen; Chris K.C. Wong; Will M. Lee; C. Yan Cheng
Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.
Endocrinology | 2017
Ying Gao; Haiqi Chen; Wing-Yee Lui; Will M. Lee; C. Yan Cheng
A local axis connects the apical ectoplasmic specialization (ES) at the Sertoli-spermatid interface, the basal ES at the blood-testis barrier (BTB), and the basement membrane across the seminiferous epithelium functionally in rat testes. As such, cellular events that take place simultaneously across the epithelium such as spermiation and BTB remodeling that occur at the apical ES and the basal ES, respectively, at stage VIII of the cycle are coordinated. Herein, laminin α2, a structural component of the basement membrane, was found to regulate BTB dynamics. Sertoli cells were cultured in vitro to allow the establishment of a tight junction (TJ) barrier that mimicked the BTB in vivo. Knockdown of laminin α2 by transfecting Sertoli cells with laminin α2-specific short hairpin RNA vs the nontargeting negative control was shown to perturb the Sertoli cell TJ barrier, illustrating laminin α2 was involved in regulating BTB dynamics. This regulatory effect was mediated through mammalian target of rapamycin complex 1 (mTORC1) signaling because the two mTORC1 downstream signaling molecules ribosomal protein S6 and Akt1/2 were activated and inactivated, respectively, consistent with earlier findings that mTORC1 is involved in promoting BTB remodeling. Also, laminin α2 knockdown induced F-actin and microtubule (MT) disorganization through changes in the spatial expression of F-actin regulators actin-related protein 3 and epidermal growth factor receptor pathway substrate 8 vs end-binding protein 1 (a MT plus-end tracking protein, +TIP). These laminin α2 knockdown-mediated effects on F-actin and MT organization was blocked by exposing Sertoli cells to rapamycin, an inhibitor of mTORC1 signaling, and also SC79, an activator of Akt. In summary, laminin α2-mediated regulation on Sertoli cell BTB dynamics is through mTORC1 signaling.
The FASEB Journal | 2017
Haiqi Chen; Dolores D. Mruk; Will M. Lee; C. Yan Cheng
Spermatogenesis takes place in the epithelium of the seminiferous tubules of the testes, producing millions of spermatozoa per day in an adult male in rodents and humans. Thus, multiple cellular events that are regulated by an array of signaling molecules and pathways are tightly coordinated to support spermatogenesis. Here, we report findings of a local regulatory axis between the basement membrane (BM), the blood‐testis barrier (BTB), and the apical ectoplasmic specialization (apical ES; a testis‐specific, actin‐rich adherens junction at the Sertoli cell–spermatid interface) to coordinate cellular events across the seminiferous epithelium during the epithelial cycle. In short, a biologically active fragment, noncollagenous 1 (NC1) domain that is derived from collagen chains in the BM, was found to modulate cell junction dynamics at the BTB and apical ES. NC1 domain from the collagen α3(IV) chain was cloned into a mammalian expression vector, pCI‐neo, with and without a collagen signal peptide. We also prepared a specific Ab against the purified recombinant NC1 domain peptide. These reagents were used to examine whether overexpression of NC1 domain with high transfection efficacy would perturb spermatogenesis, in particular, spermatid adhesion (i.e., inducing apical ES degeneration) and BTB function (i.e., basal ES and tight junction disruption, making the barrier leaky), in the testis in vivo. We report our findings that NC1 domain derived from collagen α3(IV) chain—a major structural component of the BM—was capable of inducing BTB remodeling, making the BTB leaky in studies in vivo. Furthermore, NC1 domain peptide was transported across the epithelium via a microtubule‐dependent mechanism and is capable of inducing apical ES degeneration, which leads to germ cell exfoliation from the seminiferous epithelium. Of more importance, we show that NC1 domain peptide exerted its regulatory effect by disorganizing actin microfilaments and microtubules in Sertoli cells so that they failed to support cell adhesion and transport of germ cells and organelles (e.g., residual bodies, phagosomes) across the seminiferous epithelium. This local regulatory axis between the BM, BTB, and the apical ES thus coordinates cellular events that take place across the seminiferous epithelium during the epithelial cycle of spermatogenesis.—Chen, H., Mruk, D. D., Lee, W. M., Cheng, C. Y. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane–derived noncollagenous 1 domain peptide. FASEB J. 31, 3587–3607 (2017). www.fasebj.org
Archive | 2017
Haiqi Chen; Dolores D. Mruk; Xiang Xiao; C. Yan Cheng
Spermatogenesis in humans is comprised of a series of highly complicated cellular events, necessary to support the production of an upward of 200 million sperm daily from puberty through the entire adulthood of a healthy man. Recent advances in the field using the techniques of cell and molecular biology, genetics, and biochemistry have unraveled many of the mysteries in spermatogenesis. In this Chapter, we highlight some recent advances in the field regarding the biology of human spermatogenesis. We also summarize and discuss recent advances regarding the regulation of spermatogenesis in humans. Due to rapid advances in our understanding of spermatogenesis and the large number of published reports in the literature in the last 2–3 decades, we focus on rapidly developing areas to stimulate the interest of our readers, in particular in areas that offer advances for the treatment of infertility in men.
Current Medicinal Chemistry | 2016
Haiqi Chen; Dolores D. Mruk; Weiliang Xia; Michele Bonanomi; Bruno Silvestrini; Chuen-Yan Cheng
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium of the seminiferous tubule, the functional unit of the testis, where spermatogenesis takes place, into the basal and the adluminal (apical) compartments. Functionally, the BTB provides a unique microenvironment for meiosis I/II and post-meiotic spermatid development which take place exclusively in the apical compartment, away from the host immune system, and it contributes to the immune privilege status of testis. However, the BTB also poses major obstacles in developing male contraceptives (e.g., adjudin) that exert their effects on germ cells in the apical compartment, such as by disrupting spermatid adhesion to the Sertoli cell, causing germ cell exfoliation from the testis. Besides the tight junction (TJ) between adjacent Sertoli cells at the BTB that restricts the entry of contraceptives from the microvessels in the interstitium to the adluminal compartment, drug transporters, such as P-glycoprotein and multidrug resistance-associated protein 1 (MRP1), are also present that actively pump drugs out of the testis, limiting drug bioavailability. Recent advances in drug formulations, such as drug particle micronization (<50 μm) and co-grinding of drug particles with ß-cyclodextrin have improved bioavailability of contraceptives via considerable increase in solubility. Herein, we discuss development in drug formulations using adjudin as an example. We also put emphasis on the possible use of nanotechnology to deliver adjudin to the apical compartment with multidrug magnetic mesoporous silica nanoparticles. These advances in technology will significantly enhance our ability to develop effective non-hormonal male contraceptives for men.
Seminars in Cell & Developmental Biology | 2016
Haiqi Chen; C. Yan Cheng
In adult mammalian testes, spermatogenesis is comprised of several discrete cellular events that work in tandem to support the transformation and differentiation of diploid spermatogonia to haploid spermatids in the seminiferous epithelium during the seminiferous epithelial cycle. These include: self-renewal of spermatogonial stem cells via mitosis and their transformation into differentiated spermatogonia, meiosis I/II, spermiogenesis and the release of sperms at spermiation. Studies have shown that these cellular events are under precise and coordinated controls of multiple proteins and signaling pathways. These events are also regulated by polarity proteins that are known to confer classical apico-basal (A/B) polarity in other epithelia. Furthermore, spermatid development is likely supported by planar cell polarity (PCP) proteins since polarized spermatids are aligned across the plane of seminiferous epithelium in an orderly fashion, analogous to hair cells in the cochlea of the inner ear. Thus, the maximal number of spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we briefly summarize recent findings regarding the role of PCP proteins in the testis. This information should be helpful in future studies to better understand the role of PCP proteins in spermatogenesis.
Seminars in Cell & Developmental Biology | 2017
Haiqi Chen; Dolores D. Mruk; Wing-Yee Lui; Chris K.C. Wong; Will M. Lee; C. Yan Cheng
In adult mammalian testes, spermatids, most notably step 17-19 spermatids in stage IV-VIII tubules, are aligned with their heads pointing toward the basement membrane and their tails toward the tubule lumen. On the other hand, these polarized spermatids also align across the plane of seminiferous epithelium, mimicking planar cell polarity (PCP) found in other hair cells in cochlea (inner ear). This orderly alignment of developing spermatids during spermiogenesis is important to support spermatogenesis, such that the maximal number of developing spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we provide emerging evidence to demonstrate spermatid PCP in the seminiferous epithelium to support spermatogenesis. We also review findings in the field regarding the biology of spermatid cellular polarity (e.g., head-tail polarity and apico-basal polarity) and its inter-relationship to spermatid PCP. Furthermore, we also provide a hypothetical concept on the importance of PCP proteins in endocytic vesicle-mediated protein trafficking events to support spermatogenesis through protein endocytosis and recycling.
Scientific Reports | 2017
Ying Gao; Haiqi Chen; Xiang Xiao; Wing-Yee Lui; Will M. Lee; Dolores D. Mruk; C. Yan Cheng
PFOS (perfluorooctanesulfonate, or perfluorooctane sulfonic acid) is an anthropogenic fluorosurfactant widely used in consumer products. While its use in Europe, Canada and the U.S. has been banned due to its human toxicity, it continues to be used in China and other developing countries as a global pollutant. Herein, using an in vitro model of Sertoli cell blood-testis barrier (BTB), PFOS was found to induce Sertoli cell injury by perturbing actin cytoskeleton through changes in the spatial expression of actin regulatory proteins. Specifically, PFOS caused mis-localization of Arp3 (actin-related protein 3, a branched actin polymerization protein) and palladin (an actin bundling protein). These disruptive changes thus led to a dis-organization of F-actin across Sertoli cell cytosol, causing truncation of actin microfilament, thereby failing to support the Sertoli cell morphology and adhesion protein complexes (e.g., occludin-ZO-1, CAR-ZO-1, and N-cadherin-ß-catenin), through a down-regulation of p-Akt1-S473 and p-Akt2-S474. The use of SC79, an Akt1/2 activator, was found to block the PFOS-induced Sertoli cell injury by rescuing the PFOS-induced F-actin dis-organization. These findings thus illustrate PFOS exerts its disruptive effects on Sertoli cell function downstream through Akt1/2. As such, PFOS-induced male reproductive dysfunction can possibly be managed through an intervention on Akt1/2 expression.