Haitao Cao
Nanjing Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haitao Cao.
Discrete Mathematics | 2009
Haitao Cao; Kejun Chen; Ruizhong Wei
In statistical planning of experiments, super-simple designs are the ones providing samples with maximum intersection as small as possible. Super-simple designs are also useful in other constructions, such as superimposed codes and perfect hash families etc. The existence of super-simple (v,4,@l)-BIBDs have been determined for @l=2,3,4 and 6. When @l=5, the necessary conditions of such a design are that v=1,4(mod12) and v>=13. In this paper, we show that there exists a super-simple (v,4,5)-BIBD for each v=1,4(mod12) and v>=13.
Discrete Mathematics | 2011
Haitao Cao; Meixin Niu; C. Tang
Suppose H is a complete m -partite graph K m ( n 1 , n 2 , ? , n m ) with vertex set V and m independent sets G 1 , G 2 , ? , G m of n 1 , n 2 , ? , n m vertices respectively. Let G = { G 1 , G 2 , ? , G m } . If the edges of λ H can be partitioned into a set C of k -cycles, then ( V , G , C ) is called a k -cycle group divisible design with index λ , denoted by ( k , λ ) -CGDD. A ( k , λ ) -cycle frame is a ( k , λ ) -CGDD ( V , G , C ) in which C can be partitioned into holey 2-factors, each holey 2-factor being a partition of V ? G i for some G i ? G . Stinson et al. have resolved the existence of ( 3 , λ ) -cycle frames of type g u . In this paper, we show that there exists a ( k , λ ) -cycle frame of type g u for k ? { 4 , 5 , 6 } if and only if g ( u - 1 ) ? 0 ( mod k ) , λ g ? 0 ( mod 2 ) , u ? 3 when k ? { 4 , 6 } , u ? 4 when k = 5 , and ( k , λ , g , u ) ? ( 6 , 1 , 6 , 3 ) . A k -cycle system of order n whose cycle set can be partitioned into ( n - 1 ) / 2 almost parallel classes and a half-parallel class is called an almost resolvable k -cycle system, denoted by k -ARCS ( n ) . Lindner et al. have considered the general existence problem of k -ARCS ( n ) from the commutative quasigroup for k ? 0 ( mod 2 ) . In this paper, we give a recursive construction by using cycle frames which can also be applied to construct k -ARCS ( n ) s when k ? 1 ( mod 2 ) . We also update the known results and prove that for k ? { 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 14 } there exists a k -ARCS ( 2 k t + 1 ) for each positive integer t with three known exceptions and four additional possible exceptions.
Discrete Mathematics | 2009
Haitao Cao; L. Wang; Ruizhong Wei
In this note, we complete the existence spectra of HGDDs with block size four as well as double frames with block size three.
Discrete Mathematics | 2012
Meixin Niu; Haitao Cao
Abstract Let J be a set of positive integers. Suppose m > 1 and H is a complete m -partite graph with vertex set V and m groups G 1 , G 2 , … , G m . Let | V | = v and G = { G 1 , G 2 , … , G m } . If the edges of λ H can be partitioned into a set C of cycles with lengths from J , then ( V , G , C ) is called a cycle group divisible design with index λ and order v , denoted by ( J , λ ) -CGDD. A ( J , λ ) -cycle frame is a ( J , λ ) -CGDD ( V , G , C ) in which C can be partitioned into holey 2-factors, each holey 2-factor being a partition of V ∖ G i into cycles for some G i ∈ G . The existence of ( k , λ ) -cycle frames of type g u with 3 ≤ k ≤ 6 has been solved completely. In this paper, we show that there exists a ( { 3 , 5 } , λ ) -cycle frame of type g u for any u ≥ 4 , λ g ≡ 0 ( mod 2 ) , ( g , u ) ≠ ( 1 , 5 ) , ( 1 , 8 ) and ( g , u , λ ) ≠ ( 2 , 5 , 1 ) . A k -cycle system of order n whose cycle set can be partitioned into ( n − 1 ) / 2 almost parallel classes and a half-parallel class is called an almost resolvable k -cycle system, denoted by k -ARCS ( n ) . It has been proved that for k ∈ { 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 14 } there exists a k -ARCS ( 2 k t + 1 ) for each positive integer t with three exceptions and four possible exceptions. In this paper, we shall show that there exists a k -ARCS ( 2 k t + 1 ) for all t ≥ 1 , 11 ≤ k ≤ 49 , k ≡ 1 ( mod 2 ) and t ≠ 2 , 3 , 5 .
Discrete Mathematics | 2009
Haitao Cao; F. Yan
Abstract In this paper, we investigate the existence of a super-simple (4, 5)-GDD of type g u and show that such a design exists if and only if u ≥ 4 , g ( u − 2 ) ≥ 10 , g ( u − 1 ) ≡ 0 ( mod 3 ) and u ( u − 1 ) g 2 ≡ 0 ( mod 12 ) .
Discrete Mathematics | 2018
L. Wang; Haitao Cao
Abstract In this paper, we almost completely solve the Hamilton–Waterloo problem with C 8 -factors and C m -factors where the number of vertices is a multiple of 8 m .
Discrete Mathematics | 2017
L. Wang; Haitao Cao
In this paper, we construct almost resolvable cycle systems of order
Discrete Mathematics | 2015
Haitao Cao; Jianguo Lei; Lie Zhu
4k+1
Discrete Mathematics | 2018
Xiaolei Niu; Haitao Cao
for odd
Discrete Mathematics | 2016
Fen Chen; Haitao Cao
k\ge 11