Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haitao Ding is active.

Publication


Featured researches published by Haitao Ding.


Journal of Virology | 2012

Generation of Transmitted/Founder HIV-1 Infectious Molecular Clones and Characterization of Their Replication Capacity in CD4 T Lymphocytes and Monocyte-Derived Macrophages

Christina Ochsenbauer; Tara G. Edmonds; Haitao Ding; Brandon F. Keele; Julie M. Decker; Maria G. Salazar; Jesus F. Salazar-Gonzalez; Robin J. Shattock; Barton F. Haynes; George M. Shaw; Beatrice H. Hahn; John C. Kappes

ABSTRACT Genome sequences of transmitted/founder (T/F) HIV-1 have been inferred by analyzing single genome amplicons of acute infection plasma viral RNA in the context of a mathematical model of random virus evolution; however, few of these T/F sequences have been molecularly cloned and biologically characterized. Here, we describe the derivation and biological analysis of ten infectious molecular clones, each representing a T/F genome responsible for productive HIV-1 clade B clinical infection. Each of the T/F viruses primarily utilized the CCR5 coreceptor for entry and replicated efficiently in primary human CD4+ T lymphocytes. This result supports the conclusion that single genome amplification-derived sequences from acute infection allow for the inference of T/F viral genomes that are consistently replication competent. Studies with monocyte-derived macrophages (MDM) demonstrated various levels of replication among the T/F viruses. Although all T/F viruses replicated in MDM, the overall replication efficiency was significantly lower compared to prototypic “highly macrophage-tropic” virus strains. This phenotype was transferable by expressing the env genes in an isogenic proviral DNA backbone, indicating that T/F virus macrophage tropism mapped to Env. Furthermore, significantly higher concentrations of soluble CD4 were required to inhibit T/F virus infection compared to prototypic macrophage-tropic virus strains. Our findings suggest that the acquisition of clinical HIV-1 subtype B infection occurs by mucosal exposure to virus that is not highly macrophage tropic and that the generation and initial biological characterization of 10 clade B T/F infectious molecular clones provides new opportunities to probe virus-host interactions involved in HIV-1 transmission.


Virology | 2010

Replication Competent Molecular Clones of HIV-1 Expressing Renilla Luciferase Facilitate the Analysis of Antibody Inhibition in PBMC

Tar A. G. Edmonds; Haitao Ding; Xing Yuan; Qing Wei; Kendra S. Smith; Joan A. Conway; Lindsay Wieczorek; Bruce K. Brown; Victoria R. Polonis; John T. West; David C. Montefiori; John C. Kappes; Christina Ochsenbauer

Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy.


PLOS Pathogens | 2012

Transmitted/Founder and Chronic Subtype C HIV-1 Use CD4 and CCR5 Receptors with Equal Efficiency and Are Not Inhibited by Blocking the Integrin α4β7

Nicholas F. Parrish; Craig B. Wilen; Lauren B. Banks; Shilpa S. Iyer; Jennifer M. Pfaff; Jesus F. Salazar-Gonzalez; Maria G. Salazar; Julie M. Decker; Erica H. Parrish; Anna Berg; Jennifer Hopper; Bhavna Hora; Amit Kumar; Tatenda Mahlokozera; Sally Yuan; Charl Coleman; Marion Vermeulen; Haitao Ding; Christina Ochsenbauer; John C. Tilton; Sallie R. Permar; John C. Kappes; Michael R. Betts; Michael P. Busch; Feng Gao; David C. Montefiori; Barton F. Haynes; George M. Shaw; Beatrice H. Hahn; Robert W. Doms

Sexual transmission of human immunodeficiency virus type 1 (HIV-1) most often results from productive infection by a single transmitted/founder (T/F) virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs) that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20) and chronic (n = 20) Env constructs as well as full-length T/F (n = 6) and chronic (n = 4) infectious molecular clones (IMCs). We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs) antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently.


Retrovirology | 2013

Relative resistance of HIV-1 founder viruses to control by interferon-alpha

Angharad E. Fenton-May; Oliver Dibben; Tanja Emmerich; Haitao Ding; K. Pfafferott; Marlén M. I. Aasa-Chapman; Pierre Pellegrino; Ian Williams; Myron S. Cohen; Feng Gao; George M. Shaw; Beatrice H. Hahn; Christina Ochsenbauer; John C. Kappes; Persephone Borrow

BackgroundFollowing mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis, the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to control by type 1 IFNs was analysed.ResultsThe replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean IC50 value for IFNα2 (22 U/ml) was lower than that for IFNβ (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNα2 and IFNβ, likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNα than virus isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses.ConclusionsThe establishment of systemic HIV-1 infection by relatively IFNα-resistant founder viruses lends strong support to the hypothesis that IFNα plays an important role in the control of HIV-1 replication during the earliest stages of infection, prior to systemic viral spread. These findings suggest that it may be possible to harness the antiviral activity of type 1 IFNs in prophylactic and potentially also therapeutic strategies to combat HIV-1 infection.


Journal of Virology | 2015

Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140

Eden P. Go; Christopher Gu; Luis Castillo-Menendez; Shijian Zhang; Youdong Mao; Haiyan Chen; Haitao Ding; John K. Wakefield; David Hua; Hua-Xin Liao; John C. Kappes; Joseph Sodroski; Heather Desaire

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, which consists of the gp120 and gp41 subunits, is the focus of multiple strategies for vaccine development. Extensive Env glycosylation provides HIV-1 with protection from the immune system, yet the glycans are also essential components of binding epitopes for numerous broadly neutralizing antibodies. Recent studies have shown that when Env is isolated from virions, its glycosylation profile differs significantly from that of soluble forms of Env (gp120 or gp140) predominantly used in vaccine discovery research. Here we show that exogenous membrane-anchored Envs, which can be produced in large quantities in mammalian cells, also display a virion-like glycan profile, where the glycoprotein is extensively decorated with high-mannose glycans. Additionally, because we characterized the glycosylation with a high-fidelity profiling method, glycopeptide analysis, an unprecedented level of molecular detail regarding membrane Env glycosylation and its heterogeneity is presented. Each glycosylation site was characterized individually, with about 500 glycoforms characterized per Env protein. While many of the sites contain exclusively high-mannose glycans, others retain complex glycans, resulting in a glycan profile that cannot currently be mimicked on soluble gp120 or gp140 preparations. These site-level studies are important for understanding antibody-glycan interactions on native Env trimers. Additionally, we report a newly observed O-linked glycosylation site, T606, and we show that the full O-linked glycosylation profile of membrane-associated Env is similar to that of soluble gp140. These findings provide new insight into Env glycosylation and clarify key molecular-level differences between membrane-anchored Env and soluble gp140. IMPORTANCE A vaccine that protects against human immunodeficiency virus type 1 (HIV-1) infection should elicit antibodies that bind to the surface envelope glycoproteins on the membrane of the virus. The envelope glycoproteins have an extensive coat of carbohydrates (glycans), some of which are recognized by virus-neutralizing antibodies and some of which protect the virus from neutralizing antibodies. We found that the HIV-1 membrane envelope glycoproteins have a unique pattern of carbohydrates, with many high-mannose glycans and also, in some places, complex glycans. This pattern was very different from the carbohydrate profile seen for a more easily produced soluble version of the envelope glycoprotein. Our results provide a detailed characterization of the glycans on the natural membrane envelope glycoproteins of HIV-1, a carbohydrate profile that would be desirable to mimic with a vaccine.


Journal of Virology | 2012

Initial HIV-1 Antigen-Specific CD8+ T Cells in Acute HIV-1 Infection Inhibit Transmitted/Founder Virus Replication

Stephanie A. Freel; Ralph A. Picking; Guido Ferrari; Haitao Ding; Christina Ochsenbauer; John C. Kappes; Jennifer L. Kirchherr; Kelly A. Soderberg; Kent J. Weinhold; Coleen K. Cunningham; Thomas N. Denny; John A. Crump; Myron S. Cohen; Andrew J. McMichael; Barton F. Haynes; Georgia D. Tomaras

ABSTRACT CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8+ T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8+ responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8+ T cells during AHI. Autologous and heterologous CD8+ T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8+ T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8+ antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8+-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8+ T cell-mediated inhibition of virus replication. CD8+ T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies.


Biochemical Journal | 2008

Calmodulin binding to cellular FLICE-like inhibitory protein modulates Fas-induced signalling

Pritish Pawar; Keith J. Micoli; Haitao Ding; William J. Cook; John C. Kappes; Yabing Chen; Jay M. McDonald

We and others have demonstrated that Fas-mediated apoptosis is a potential therapeutic target for cholangiocarcinoma. Previously, we reported that CaM (calmodulin) antagonists induced apoptosis in cholangiocarcinoma cells through Fas-related mechanisms. Further, we identified a direct interaction between CaM and Fas with recruitment of CaM into the Fas-mediated DISC (death-inducing signalling complex), suggesting a novel role for CaM in Fas signalling. Therefore we characterized the interaction of CaM with proteins recruited into the Fas-mediated DISC, including FADD (Fas-associated death domain)-containing protein, caspase 8 and c-FLIP {cellular FLICE [FADD (Fas-associated death domain)-like interleukin 1beta-converting enzyme]-like inhibitory protein}. A Ca(2+)-dependent direct interaction between CaM and FLIP(L), but not FADD or caspase 8, was demonstrated. Furthermore, a 37.3+/-5.7% increase (n=6, P=0.001) in CaM-FLIP binding was observed at 30 min after Fas stimulation, which returned to the baseline after 60 min and correlated with a Fas-induced increase in intracellular Ca(2+) that reached a peak at 30 min and decreased gradually over 60 min in cholangiocarcinoma cells. A CaM antagonist, TFP (trifluoperazine), inhibited the Fas-induced increase in CaM-FLIP binding concurrent with inhibition of ERK (extracellular-signal-regulated kinase) phosphorylation, a downstream signal of FLIP. Direct binding between CaM and FLIP(L) was demonstrated using recombinant proteins, and a CaM-binding region was identified in amino acids 197-213 of FLIP(L). Compared with overexpression of wild-type FLIP(L) that resulted in decreased spontaneous as well as Fas-induced apoptosis, mutant FLIP(L) with deletion of the CaM-binding region resulted in increased spontaneous and Fas-induced apoptosis in cholangiocarcinoma cells. Understanding the biology of CaM-FLIP binding may provide new therapeutic targets for cholangiocarcinoma and possibly other cancers.


AIDS | 2011

IgG2 inhibits HIV-1 internalization by monocytes, and IgG subclass binding is affected by gp120 glycosylation.

Donald N. Forthal; Gary Landucci; Haitao Ding; John C. Kappes; Angela Wang; Irene Thung; Tran B. Phan

Objectives:To determine the effect of IgG2 opsonization on internalization of HIV-1 virus-like particles (VLPs) by monocytes and to determine the effect of gp120 glycosylation on IgG subclass binding. Design:Fc-Fc&ggr; receptor (Fc&ggr;R) interactions are important in antibody-mediated protection from lentivirus infection. Such interactions are influenced by IgG subclass, with IgG2 having low affinity to most Fc&ggr;Rs. We determined the impact of IgG2 on internalization of antibody-opsonized VLPs. It is also known that gp120 glycans affect the binding and function of anti-gp120 antibodies. We determined whether binding of each IgG subclass to recombinant gp120 (rgp120) was similarly impacted by gp120 glycosylation. Methods:Green fluorescent protein (GFP) containing VLPs were opsonized with IgG and IgG2-depleted IgG from individuals vaccinated with rgp120 during the Vax004 vaccine trial. Opsonized VLPs were incubated with peripheral blood mononuclear cells from healthy donors (n = 46), and percentages of GFP+ monocytes were determined by flow cytometry. IgG subclass binding of pooled and individual sera to rgp120 and to deglycosylated (PNGase-treated) rgp120 was determined by ELISA. Results:IgG2 elicited by rgp120 vaccination inhibited internalization of antibody-opsonized HIV-1 VLPs by monocytes from healthy individuals (P = 2.8 × 10−5). We also found that both IgG2 and IgG4 bound more poorly to enzymatically deglycosylated rgp120 than to unchanged rgp120. On the contrary, IgG1 and IgG3 bound slightly better to deglycosylated rgp120. Conclusion:Vaccine-induced IgG2 may adversely affect a potentially important antiviral antibody activity, and altering Env glycans might provide the means to bias the subclass response in a favorable direction.


Journal of Virology | 2017

Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers

Eden P. Go; Haitao Ding; Shijian Zhang; Rajesh P. Ringe; Nathan I. Nicely; David Hua; Robert T. Steinbock; Michael Golabek; James Alin; S. Munir Alam; Albert Cupo; Barton F. Haynes; John C. Kappes; John P. Moore; Joseph Sodroski; Heather Desaire; Wesley I. Sundquist

ABSTRACT HIV-1 envelope glycoprotein (Env) glycosylation is important because individual glycans are components of multiple broadly neutralizing antibody epitopes, while shielding other sites that might otherwise be immunogenic. The glycosylation on Env is influenced by a variety of factors, including the genotype of the protein, the cell line used for its expression, and the details of the construct design. Here, we used a mass spectrometry (MS)-based approach to map the complete glycosylation profile at every site in multiple HIV-1 Env trimers, accomplishing two goals. (i) We determined which glycosylation sites contain conserved glycan profiles across many trimeric Envs. (ii) We identified the variables that impact Envs glycosylation profile at sites with divergent glycosylation. Over half of the gp120 glycosylation sites on 11 different trimeric Envs have a conserved glycan profile, indicating that a native consensus glycosylation profile does indeed exist among trimers. We showed that some soluble gp120s and gp140s exhibit highly divergent glycosylation profiles compared to trimeric Env. We also assessed the impact of several variables on Env glycosylation: truncating the full-length Env; producing Env, instead of the more virologically relevant T lymphocytes, in CHO cells; and purifying Env with different chromatographic platforms, including nickel-nitrilotriacetic acid (Ni-NTA), 2G12, and PGT151 affinity. This report provides the first consensus glycosylation profile of Env trimers, which should serve as a useful benchmark for HIV-1 vaccine developers. This report also defines the sites where glycosylation may be impacted when Env trimers are truncated or produced in CHO cells. IMPORTANCE A protective HIV-1 vaccine will likely include a recombinant version of the viral envelope glycoprotein (Env). Env is highly glycosylated, and yet vaccine developers have lacked guidance on how to assess whether their immunogens have optimal glycosylation. The following important questions are still unanswered. (i) What is the “target” glycosylation profile, when the goal is to generate a natively glycosylated protein? (ii) What variables exert the greatest influence on Env glycosylation? We identified numerous sites on Env where the glycosylation profile does not deviate in 11 different Env trimers, and we investigated the impact on the divergent glycosylation profiles of changing the genotype of the Env sequence, the construct design, the purification method, and the producer cell type. The data presented here give vaccine developers a “glycosylation target” for their immunogens, and they show how protein production variables can impact Env glycosylation.


Neuroscience Research | 2007

Neural progenitor cell transplantation and imaging in a large animal model

Lei Wang; Douglas R. Martin; Henry J. Baker; Kurt R. Zinn; John C. Kappes; Haitao Ding; Atoska S. Gentry; Scarlett Harper; Evan Y. Snyder; Nancy R. Cox

To evaluate neural stem/progenitor cell (NPC) transplantation therapy in cat models of neurodegenerative diseases, we have isolated, expanded and characterized feline NPCs (fNPCs) from normal fetal cat brain. Feline NPCs responsive to both human epidermal growth factor (hEGF) and human fibroblast growth factor 2 (hFGF2) proliferated as neurospheres, which were able to differentiate to neurons and glial cells. The analysis of growth factors indicated that both hEGF and hFGF2 were required for proliferation of fNPCs. In contrast to the effect on human NPCs, human leukemia inhibitory factor (hLIF) enhanced differentiation of fNPCs. Expanded fNPCs were injected into the brains of normal adult cats. Immunohistochemical analysis showed that the majority of transplanted cells were located adjacent to the injection site and some fNPCs differentiated into neurons. The survival of transplanted fNPCs over time was monitored using non-invasive bioluminescent imaging technology. This study provided the first evidence of allotransplantation of fNPCs into feline CNS. Cats have heterogeneous genetic backgrounds and possess neurological diseases that closely resemble analogous human diseases. The characterization of fNPCs and exploration of non-invasive bioluminescent imaging to track transplanted cells in this study will allow evaluation of NPC transplantation therapy using feline models of human neurological diseases.

Collaboration


Dive into the Haitao Ding's collaboration.

Top Co-Authors

Avatar

John C. Kappes

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Christina Ochsenbauer

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Hildebrandt

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Ina L. Urbatsch

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice H. Hahn

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

George M. Shaw

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei A. Aleksandrov

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge