Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haitao Xiong is active.

Publication


Featured researches published by Haitao Xiong.


Journal of Immunology | 2015

Porcine β-Defensin 2 Attenuates Inflammation and Mucosal Lesions in Dextran Sodium Sulfate–Induced Colitis

Feifei Han; Haiwen Zhang; Xi Xia; Haitao Xiong; Deguang Song; Xin Zong; Yizhen Wang

Intestinal permeability plays a critical role in the etiopathogenesis of ulcerative colitis. Defensins, including porcine β-defensin (pBD)2, are crucial antimicrobial peptides for gut protection owing to their antibacterial and immunomodulatory activities. The purpose of this study was to investigate the protective effects of pBD2 on mucosal injury and the disruption of the epithelial barrier during the pathological process of dextran sodium sulfate (DSS)–induced colitis. The effects and mechanism of pBD2 were evaluated both using a DSS-induced C57BL/6 mouse model and, in vitro, using Caco-2 and RAW264.7 cells. DSS-induced colitis was characterized by higher disease activity index, shortened colon length, elevated activities of myeloperoxidase and eosinophil peroxidase, histologic evidence of inflammation, and increased expression levels of TNF-α, IL-6, and IL-8. pBD2 increased the expression of zonula occludens-1, zonula occludens-2, claudin-1, mucin-1, and mucin-2 mRNA and proteins, and it decreased permeability to FITC-D, as well as apoptosis, in DSS-treated mice. pBD2 also decreased inflammatory infiltrates of the colon epithelium. In Caco-2 cells, pBD2 increased transepithelial electrical resistance and mucin mRNA expression, and it decreased the permeability of FITC-D while preserving the structural integrity of the tight junctions. The effects of pBD2 appeared to be through upregulation of the expression of genes associated with tight junctions and mucins, and by suppressing DSS-induced increases in inflammation, inducible NO synthase, cyclooxygenase-2, and apoptosis. These results show that pBD2 improves DSS-induced changes in mucosal lesions and paracellular permeability, possibly by affecting the activation of NF-κB signaling. The present study demonstrates that intrarectal administration of pBD2 may be a novel preventive option for ulcerative colitis.


Scientific Reports | 2016

High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine

Hongbo Yi; Lin Zhang; Zhen-Shun Gan; Haitao Xiong; Caihua Yu; Huahua Du; Yizhen Wang

Diarrhea is a leading cause of death among young mammals, especially during weaning. Here, we investigated the effects of Cathelicidin-WA (CWA) on diarrhea, intestinal morphology, inflammatory responses, epithelial barrier and microbiota in the intestine of young mammals during weaning. Piglets with clinical diarrhea were selected and treated with saline (control), CWA or enrofloxacin (Enro) for 4 days. Both CWA and Enro effectively attenuated diarrhea. Compared with the control, CWA decreased IL-6, IL-8 and IL-22 levels and reduced neutrophil infiltration into the jejunum. CWA inhibited inflammation by down-regulating the TLR4-, MyD88- and NF-κB-dependent pathways. Additionally, CWA improved intestinal morphology by increasing villus and microvillus heights and enhancing intestinal barrier function by increasing tight junction (TJ) protein expression and augmenting wound-healing ability in intestinal epithelial cells. CWA also improved microbiota composition and increased short-chain fatty acid (SCFA) levels in feces. By contrast, Enro not only disrupted the intestinal barrier but also negatively affected microbiota composition and SCFA levels in the intestine. In conclusion, CWA effectively attenuated inflammation, enhanced intestinal barrier function, and improved microbiota composition in the intestines of weaned piglets. These results suggest that CWA could be an effective and safe therapy for diarrhea or other intestinal diseases in young mammals.


Scientific Reports | 2016

Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition

Haitao Xiong; Bingxiu Guo; Zhen-Shun Gan; Deguang Song; Zeqing Lu; Hongbo Yi; Yueming Wu; Yizhen Wang; Huahua Du

Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition.


International Immunopharmacology | 2016

Developmental expression of STATs, nuclear factor-κB and inflammatory genes in the jejunum of piglets during weaning

Hongbo Yi; Denghu Jiang; Lin Zhang; Haitao Xiong; Feifei Han; Yizhen Wang

The signal transducer and activator of transcription (STAT) proteins play essential roles in apoptosis, proliferation and survival. However, the role of STATs in intestinal inflammation during weaning is unclear. This study aimed to investigate developmental expression of STATs, nuclear factor-κB (NF-κB) and inflammatory genes in the jejunum of piglets during weaning. Thirty-two piglets were weaned at 21d and sacrificed at 0, 1, 7, or 14d (n=8) after weaning. Villus height and the villus height/crypt depth ratio were decreased, whereas crypt depth was increased in the jejunum at 7 and 14d after weaning. In addition, the mRNA levels of interferon-γ (IFN-γ), inducible nitric oxide synthase (iNOS), IL-6, IL-8, IL-12 and IL-22 were increased in the jejunum at 7 and 14d after weaning, whereas transforming growth factor-β (TGF-β), suppressor of cytokine signaling 3 (SCOS3) and arginase-1 was decreased. Neutrophil infiltration was increased in the mucosa of the jejunum after weaning. Moreover, phosphorylation of IκB-α, NF-κB, AKT and STAT-3 was increased. However, the phosphorylation of STAT-1 (at 7 and 14d) and STAT-6 (at 1 and 7d) was suppressed in the jejunum after weaning. Treatment of porcine jejunal epithelial (IPEC-J2) cells with the STAT inhibitors fludarabine, niclosamide and teriflunomide, which inhibit the phosphorylation of STAT-1, STAT-3 and STAT-6, respectively, weakened the defense capacity of these cells against bacterial infection. In conclusion, weaning caused severe inflammation associated with activation of the NF-κB and STAT-3 pathways and suppression of STAT-1 and STAT-6 in the jejunum of piglets.


Diseases of Aquatic Organisms | 2012

Evidence for cell apoptosis suppressing white spot syndrome virus replication in Procambarus clarkii at high temperature

Xiao-Guo Wu; Haitao Xiong; Yi-Zhen Wang; Huahua Du

In shrimp, higher water temperatures (~32°C) can suppress the ability of white spot syndrome virus (WSSV) to replicate and cause mortality, but the mechanisms remain unclear. To investigate whether cell apoptosis might be involved, a Tdt-mediated dUTP nick-end label (TUNEL) method was used to assess levels of chromosomal DNA fragmentation in hepatopancreas and gill cells of Procambarus clarkii crayfish infected with WSSV and maintained at either 32 ± 1°C or 24 ± 1°C. Based on relative cell numbers with yellow-green colored TUNEL-positive nuclei, the apoptotic index was elevated in WSSV-infected crayfish maintained at 32°C. In gill tissue sections examined by transmission electron microscope, cells with nuclei displaying apoptotic bodies or marginated, condensed and fragmented chromatin without concurrent cell cytoplasm damage were also more prevalent. Flow cytometry sorting of annexin-stained cells showed apoptosis to be most prevalent in granular haemocytes, and assays for caspase-3 activity showed it to be most elevated in hepatopancreas tissue. Despite these indicators of cell apoptosis but consistent with WSSV replication being restricted at elevated temperatures, no increases in transcription of the viral anti-apoptosis genes ORF390 and ORF222 were detected by RT-PCR in shrimp maintained at 32°C, possibly due to the elevated levels of cellular apoptosis.


Antimicrobial Agents and Chemotherapy | 2017

Synthetic Porcine Hepcidin Exhibits Different Roles in Escherichia coli and Salmonella Infections

Dan Liu; Zhen-Shun Gan; Wan Ma; Haitao Xiong; Yun-Qing Li; Yizhen Wang; Huahua Du

ABSTRACT Hepcidin, an antimicrobial peptide, was discovered to integrate diverse signals from iron status and an infection threat and orchestrate a series of host-protective responses. Several studies have investigated the antimicrobial role of hepcidin, but the results have been controversial. Here, we aimed to examine the role of hepcidin in bacterial adherence and invasion in vitro. We found that porcine hepcidin could decrease the amount of the extracellular pathogen enterotoxigenic Escherichia coli (ETEC) K88 that adhered to cells because it caused the aggregation of the bacteria. However, addition of hepcidin to macrophages infected with the intracellular pathogen Salmonella enterica serovar Typhimurium enhanced the intracellular growth of the pathogen through the degradation of ferroportin, an iron export protein, and then the sequestration of intracellular iron. Intracellular iron was unavailable by use of the iron chelator deferiprone (DFO), which reduced intracellular bacterial growth. These results demonstrate that hepcidin exhibits different functions in extracellular and intracellular bacterial infections, which suggests that different defense strategies should be taken to prevent bacterial infection.


Nutrients | 2018

Iron Promotes Intestinal Development in Neonatal Piglets

Yutian Pu; Shuhui Li; Haitao Xiong; Xiaofeng Zhang; Yizhen Wang; Huahua Du

Early nutrition is key to promoting gut growth and education of the immune system. Although iron deficiency anemia has long been recognized as a serious iron disorder, the effects of iron supplementation on gut development are less clear. Therefore, using suckling piglets as the model for iron deficiency, we assessed the impacts of iron supplementation on hematological status, gut development, and immunity improvement. Piglets were parenterally supplied with iron dextran (FeDex, 60 mg Fe/kg) by intramuscular administration on the third day after birth and slaughtered at the age of two days, five days, 10 days, and 20 days. It was expected that iron supplementation with FeDex improved the iron status with higher levels of serum iron, ferritin, transferrin, and iron loading in the liver by regulating the interaction of hepcidin and ferroportin (FPN). FeDex supplementation increased villus length and crypt depth, attenuated the pathological status of the duodenum, and was beneficial to intestinal mucosa. FeDex also influenced the intestinal immune development by stimulating the cytokines’ production of the intestine and enhancing the phagocytotic capacity of monocytes. Overall, the present study suggested that iron supplementation helped promote the development of the intestine by improving its morphology, which maintains its mucosal integrity and enhances the expression of immuno-associated factors.


Veterinary Immunology and Immunopathology | 2014

Expression pattern of porcine antimicrobial peptide PR-39 and its induction by enterotoxigenic Escherichia coli (ETEC) F4ac

Yanhua Gao; Yili Rong; Youming Wang; Haitao Xiong; Xia Huang; Feifei Han; Jie Feng; Yizhen Wang

PR-39 is a gene-encoded, proline-arginine-rich porcine antimicrobial peptide with multiple biological functions. In the current study, the tissue-specific mRNA expression of PR-39 was investigated in Chinese Jinhua pigs, and the effect of enterotoxigenic Escherichia coli (ETEC) expressing F4ac (K88ac) fimbriae challenge on the mRNA expression of PR-39 in various tissues was compared between Jinhua and Landrace pigs. The three most stable expressed housekeeping genes were validated before evaluating PR-39 expression. PR-39 mRNA was predominantly expressed in the bone marrow compared with the spleen, thymus, MLN, liver and ileum. The ETEC F4ac challenge could up-regulate PR-39 mRNA expression in both Jinhua and Landrace pigs, but the changes were different between the two breeds. Jinhua pigs responded more strongly to ETEC F4ac challenge than did Landrace pigs, because the interaction between the breed and challenge significantly impact PR-39 mRNA in the thymus, liver and ileum. The PR-39 mRNA expression levels of challenged Jinhua pigs were significantly higher in the spleen, thymus, liver, ileum and MLN compared with challenged Landrace pigs. These differences in the mRNA expression of PR-39 could be a result of genetic differences in the resistance to ETEC F4ac infection between the two breeds, but this speculation requires further investigation.


International Journal of Peptide Research and Therapeutics | 2015

Porcine Hepcidin Exerts an Iron-Independent Bacteriostatic Activity Against Pathogenic Bacteria

Dan Liu; Yutian Pu; Haitao Xiong; Yizhen Wang; Huahua Du

Hepcidin was first identified as an antimicrobial peptide and later demonstrated that hepcidin is the long sought hormone to regulate iron homeostasis in mammals. Though its iron regulatory function has been extensively investigated, the studies on its antimicrobial properties are limited. The aim of current study was to evaluate the antibacterial activity of synthetic porcine hepcidin (pHepc) in vitro against pathogen bacteria via radial diffusion, colony forming count, transmission electron microscopy and DNA binding assays. Our results showed that pHepc exerted little bactericidal activity, but possessed bacteriostatic activity by reducing the viable Escherichia coli K88, E. coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Salmonella typhimurium CMCC 50013. pHepc-treated E. coli K88 exhibited longer cells and cytoplasm unevenly distribution, while pHepc-treated S. aureus led to cytoplasm leakage and partly lysis of bacterial cells. Gel retardation assay showed the existence of the binding affinity of pHepc for DNA. In addition, pHepc retained the bacteriostatic activity in a wide range of pH value from 4.0 to 8.0 or in the presence of iron, respectively. Considering the high expression in response to infection and the bacteriostatic activity, pHepc may be an important defense molecule for pig health.


Biological Trace Element Research | 2015

Iron Supplementation Attenuates the Inflammatory Status of Anemic Piglets by Regulating Hepcidin

Yutian Pu; Bingxiu Guo; Dan Liu; Haitao Xiong; Yizhen Wang; Huahua Du

Collaboration


Dive into the Haitao Xiong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge