Haitham A. Yacoub
King Abdulaziz University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haitham A. Yacoub.
Cytokine & Growth Factor Reviews | 2016
Ehab H. Mattar; Hussein A. Almehdar; Haitham A. Yacoub; Vladimir N. Uversky; Elrashdy M. Redwan
Defensins are moonlighting peptides which are broadly distributed throughout all the living kingdoms. They play a multitude of important roles in human health and disease, possessing several immunoregulatory functions and manifesting broad antimicrobial activities against viruses, bacteria, and fungi. Based on their patterns of intramolecular disulfide bridges, these small cysteine-rich cationic proteins are divided into three major types, α-, β-, and θ-defensins, with the α- and β-defensins being further subdivided into a number of subtypes. The various roles played by the defensins in the innate (especially mucosal) and adoptive immunities place these polypeptides at the frontiers of the defense against the microbial invasions. Current work analyzes the antimicrobial activities of human and animal defensins in light of their intrinsic disorder propensities.
Asian Pacific Journal of Cancer Prevention | 2014
Steve Harakeh; Mona Diab-Assaf; Rania Azar; Hani Mutlak A. Hassan; Safwan Tayeb; Khalil Abou-El-Ardat; Ghazi A. Damanhouri; Ishtiaq Qadri; Adel M. Abuzenadah; Adeel Chaudhary; Taha Kumosani; Aleksandra Niedzwiecki; M. Rath; Haitham A. Yacoub; Esam I. Azhar; Elie K. Barbour
Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol molecule from green tea and is known to exhibit antioxidative as well as tumor suppressing activity. In order to examine EGCG tumor invasion and suppressing activity against adult T-cell leukemia (ATL), two HTLV-1 positive leukemia cells (HuT-102 and C91- PL) were treated with non-cytotoxic concentrations of EGCG for 2 and 4 days. Proliferation was significantly inhibited by 100 μM at 4 days, with low cell lysis or cytotoxicity. HTLV-1 oncoprotein (Tax) expression in HuT- 102 and C91-PL cells was inhibited by 25 μM and 125 μM respectively. The same concentrations of EGCG inhibited NF-kB nuclearization and stimulation of matrix metalloproteinase-9 (MMP-9) expression in both cell lines. These results indicate that EGCG can inhibit proliferation and reduce the invasive potential of HTLV-1- positive leukemia cells. It apparently exerted its effects by suppressing Tax expression, manifested by inhibiting the activation of NF-kB pathway and induction of MMP-9 transcription in HTLV-1 positive cells.
Frontiers in Cellular and Infection Microbiology | 2015
Haitham A. Yacoub; Ahmed M. Elazzazy; Osama A. Abuzinadah; Ahmed M. Al-Hejin; Maged Mostafa Mahmoud; Steve Harakeh
Host Defense Peptides (HDPs) are small cationic peptides found in several organisms. They play a vital role in innate immunity response and immunomodulatory stimulation. This investigation was designed to study the antimicrobial activities of β-defensin peptide-4 (sAvBD-4) and 10 (sAvBD-4) derived from chickens against pathogenic organisms including bacteria and fungi. Ten bacterial strains and three fungal species were used in investigation. The results showed that the sAvBD-10 displayed a higher bactericidal potency against all the tested bacterial strains than that of sAvBD-4. The exhibited bactericidal activity was significant against almost the different bacterial strains at different peptide concentrations except for that of Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus bovis (Str. bovis) strains where a moderate effect was noted. Both peptides were effective in the inactivation of fungal species tested yielding a killing rate of up to 95%. The results revealed that the synthetic peptides were resistant to salt at a concentration of 50 mM NaCl. However, they lost antimicrobial potency when applied in the presence of high salt concentrations. Based on blood hemolysis studies, a little hemolytic effect was showed in the case of both peptides even when applied at high concentrations. The data obtained from this study indicated that synthetic avian peptides exhibit strong antibacterial and antifungal activity. In conclusion, future work and research should be tailored to a better understanding of the mechanisms of action of those peptides and their potential use in the pharmaceutical industry to help reduce the incidence and impact of infectious agent and be marketed as a naturally occurring antibiotic.
Journal of Biomolecular Structure & Dynamics | 2016
Haitham A. Yacoub; Omar A. Al-Maghrabi; Ekram S. Ahmed; Vladimir N. Uversky
NK-lysins are antimicrobial peptides (AMPs) that participate in the innate immune response and also have several pivotal roles in various biological processes. Such multifunctionality is commonly found among intrinsically disordered proteins. However, NK-lysins have never been systematically analyzed for intrinsic disorder. To fill this gap, the amino acid sequences of NK-lysins from various species were collected from UniProt and used for the comprehensive computational analysis to evaluate the propensity of these proteins for intrinsic disorder and to investigate the potential roles of disordered regions in NK-lysin functions. We analyzed abundance and peculiarities of intrinsic disorder distribution in all-known NK-lysins and showed that many NK-lysins are expected to have substantial levels of intrinsic disorder. Curiously, high level of intrinsic disorder was also found even in two proteins with known 3D-strucutres (NK-lysin from pig and human granulysin). Many of the identified disordered regions can be involved in protein–protein interactions. In fact, NK-lysins are shown to contain three to eight molecular recognition features; i.e. short structure-prone segments which are located within the long disordered regions and have a potential to undergo a disorder-to-order transition upon binding to a partner. Furthermore, these disordered regions are expected to have several sites of various posttranslational modifications. Our study shows that NK-lysins, which are AMPs with a set of prominent roles in the innate immune response, are expected to abundantly possess intrinsically disordered regions that might be related to multifunctionality of these proteins in the signal transduction pathways controlling the host response to pathogenic agents.
Mitochondrial DNA | 2013
Haitham A. Yacoub; Moataz M. Fathi; Wael Mahmoud Mahmoud
This study was carried out to figure out the potentiality of a cytochrome b gene as a barcoding tool in discriminating native chicken strains and other Gallus gallus species. We performed PCR amplification using universal primer to amplify around 415 bp fragment of cytochrome b gene of mtDNA. The results revealed that all Saudi chicken strains were identical to each other but when compared with other species of Gallus the differences were exciting. The phylogenetic tree revealed that there were seven clusters represented for native strains and were clustered together especially in black strain and dark brown ones. The results have confirmed that using cytochrome b gene to discriminate between Saudi chicken strains and other species of G. gallus fowl was a very sufficient tool. Moreover, we can consider short fragment of cytochrome b gene of mtDNA as a universal DNA barcode region. It was a much more accurate and efficient tool to discriminate interspecies than intraspecies. We think it needs more studies to confirm this concept, and we have to apply that tool for many species of vertebrate and invertebrate as well.
Mitochondrial DNA | 2015
Osama H.A. Abuzinadah; Haitham A. Yacoub; Hassan M. El Ashmaoui; Hassan A. I. Ramadan
Abstract The aim of this study is to detect the fraudulent in chicken products constitutes in order to protect consumers in Saudi Arabia from illegal substitutions. Two different approaches were used in this study, direct sequencing of specific fragments of amplified mitochondrial 12S rRNA gene in addition to species-specific PCR primers for confirmation of the obtained Blast search results. The results showed that all processed chicken products were identified as chicken (Gallus gallus) by 90–98% homology depending on obtained sequence quality. Samples labeled with chicken luncheon (samples tested in this study) were identified as turkey meat (Meleagris gallopavo) by 98% homology, suggesting adulteration with inedible parts of turkey in chicken luncheon ingredients. The results showed also that not only chicken luncheon was mixed with inedible parts of turkey but also all chicken products tested in this study (chicken balls, chicken burger, chicken sausage and chicken mined meat) contained this turkey meat. Applying methods used in this study could be useful for accurate and rapid identification of commercial processed meat.
Asian Pacific Journal of Cancer Prevention | 2015
Haitham A. Yacoub; Wael Mahmoud Mahmoud; Hatim Alaa-Eldeen El-Din El-Baz; Ola Mohamed Eid; Refaat Ibrahim El-Fayoumi; Maged Mostafa Mahmoud; Steve Harakeh; Osama H.A. Abuzinadah
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children and represents approximately 25% of cancer diagnoses among those younger than 15 years of age. AIM AND OBJECTIVES This study investigated substitutions in the ATP synthase subunit 6 gene of mitochondrial DNA (mtDNA) as a potential diagnostic biomarker for early detection and diagnosis of acute lymphoblastic leukemia. Based on mtDNA from 23 subjects diagnosed with acute lymphoblastic leukemia, approximately 465 bp of the ATP synthase subunit 6 gene were amplified and sequenced. RESULTS The sequencing revealed thirty-one mutations at 14 locations in ATP synthase subunit 6 of mtDNA in the ALL subjects. All were identified as single nucleotide polymorphisms (SNPs) with a homoplasmic pattern. The mutations were distributed between males and females. Novel haplotypes were identified in this investigation: haplotype (G) was recorded in 34% in diagnosed subjects; the second haplotype was (C) with frequency of 13% in ALL subjects. Neither of these were observed in control samples. CONCLUSIONS These haplotypes were identified for the first time in acute lymphoblastic leukemia patients. Five mutations able to change amino acid synthesis for the ATP synthase subunit 6 were associated with acute lymphoblastic leukemia. This investigation could be used to provide an overview of incidence frequency of acute lyphoblastic leukemia (ALL) in Saudi patients based on molecular events.
Biochemistry and Cell Biology | 2016
Haitham A. Yacoub; Salem M. El-Hamidy; Maged Mostafa Mahmoud; Mohamed N. Baeshen; Hussein A. Almehdar; Vladimir N. Uversky; Elrashdy M. Redwan; Omar A. Al-Maghrabi; Ahmed M. Elazzazy
In this study we identified the expression patterns of β-defensin-9 in chickens from Saudi Arabia, evaluated the antimicrobial activities of synthetic chicken β-defensin-9 (sAvBD-9) against pathogenic bacteria and fungi, and investigated the mode of action of sAvBD-9 on bacterial cells. The AvBD-9 gene of Saudi chickens encodes a polypeptide of 67 amino acids, which is highly similar to the polypeptide in duck, quail, and goose (97%, 86%, and 87%, respectively) and shares a low sequence similarity with the mammalian defensins. AvBD-9 is expressed in various organs and tissues of Saudi chickens and inhibits the growth of both Gram-negative and Gram-positive bacteria, as well as showing activity against unicellular and multicellular fungi (Aspergillus flavus, A. niger, and Candida albicans). sAvBD-9 completely inhibited the growth of both Gram-positive and Gram-negative bacterial strains as well as Candida albicans. The haemolytic effects of sAvBD-9 were limited. Morphological analysis by TEM revealed that sAvBD-9 induces shortening and swelling of Staphylococcus aureus and Shigella sonni cells, opens holes and deep craters in their envelopes, and leads to the release of their cytoplasmic content. Our data shed light on the potential applications of sAvBD-9 in the pharmaceutical industry.
Mitochondrial DNA | 2015
Haitham A. Yacoub; Hassan A. I. Ramadan; Nabih A. Baeshen; Mahmoud A. Sadek; M. E. Abou Alsoud
Abstract The current study was carried out to investigate and estimate the genetic diversity of native breeds based on cytochrome b (cyt-b) gene of mitochondrial DNA information. The obtained sequences of cyt-b gene segment have TAA as a stop codon at 488 position with no insertions or deletion in all individuals of both native chicken strains. The blast results showed that no variation was found among individuals within both native chicken strains, but when a comparison was established among them and other species of genus Gallus the variation is exploring, additionally many mutant sites were detected as single nucleotide polymorphisms (SNPs) in different sites. The phylogenetic trees exhibited three different groups. The results revealed that the native chicken strains were closely related to the cluster of Gallus gallus and subspecies of Gallus, suggesting that they may be separated from the same origin. According to this result and previously studies, the native chicken strains are genetically closer to Gallus gallus and it could be successfully distinguished from the other wild types of Gallus chicken based on cyt-b gene information. We recommended that the governmental concerns for native chicken strain should be enhanced to screen its genetic structure for large scale in the Kingdom of Saudi Arabia.
Mitochondrial DNA | 2017
Haitham A. Yacoub; Mahmoud A. Sadek
Abstract This study was conducted to find out the fraud in chicken-processed meat ingredients to protect consumers from commercial adulteration and authentication through a reliable way: direct amplification of conserved segment of cytochrome b gene of mitochondrial DNA, in addition, using species-specific primer assay for a certain cytochrome b. The results reported that chicken-processed meats were identified as a chicken meat based on amplification of conserved cytochrome b gene of mtDNA, while different fragments sizes were produced after the application of species-specific primer as follows: 227, 157, 274, 331, 389 and 439 bp for raw meat of chicken, goat, cattle, sheep, pig and horse, respectively. The results revealed that all chicken meat products are produced with 227 bp in size. While, an adulteration with pork stuffs was observed in some of the chicken meat products using a species-specific primer of cytochrome b gene, namely, chicken luncheon and chicken burger. This study represents a reliable technique that could be used to provide a promising solution for identifying the commercial adulteration and substitutions in processed meat in retail markets.