Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haitham Gabr is active.

Publication


Featured researches published by Haitham Gabr.


Genome Research | 2015

Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells

Juan Carlos Rivera-Mulia; Quinton Buckley; Takayo Sasaki; Jared Zimmerman; Ruth Didier; Kristopher L. Nazor; Jeanne F. Loring; Zheng Lian; Sherman M. Weissman; Allan J. Robins; Thomas C. Schulz; Laura Menendez; Michael Kulik; Stephen Dalton; Haitham Gabr; Tamer Kahveci; David M. Gilbert

Duplication of the genome in mammalian cells occurs in a defined temporal order referred to as its replication-timing (RT) program. RT changes dynamically during development, regulated in units of 400-800 kb referred to as replication domains (RDs). Changes in RT are generally coordinated with transcriptional competence and changes in subnuclear position. We generated genome-wide RT profiles for 26 distinct human cell types, including embryonic stem cell (hESC)-derived, primary cells and established cell lines representing intermediate stages of endoderm, mesoderm, ectoderm, and neural crest (NC) development. We identified clusters of RDs that replicate at unique times in each stage (RT signatures) and confirmed global consolidation of the genome into larger synchronously replicating segments during differentiation. Surprisingly, transcriptome data revealed that the well-accepted correlation between early replication and transcriptional activity was restricted to RT-constitutive genes, whereas two-thirds of the genes that switched RT during differentiation were strongly expressed when late replicating in one or more cell types. Closer inspection revealed that transcription of this class of genes was frequently restricted to the lineage in which the RT switch occurred, but was induced prior to a late-to-early RT switch and/or down-regulated after an early-to-late RT switch. Analysis of transcriptional regulatory networks showed that this class of genes contains strong regulators of genes that were only expressed when early replicating. These results provide intriguing new insight into the complex relationship between transcription and RT regulation during human development.


Bioinformatics | 2014

Large scale analysis of signal reachability

Andrei Todor; Haitham Gabr; Alin Dobra; Tamer Kahveci

Motivation: Major disorders, such as leukemia, have been shown to alter the transcription of genes. Understanding how gene regulation is affected by such aberrations is of utmost importance. One promising strategy toward this objective is to compute whether signals can reach to the transcription factors through the transcription regulatory network (TRN). Due to the uncertainty of the regulatory interactions, this is a #P-complete problem and thus solving it for very large TRNs remains to be a challenge. Results: We develop a novel and scalable method to compute the probability that a signal originating at any given set of source genes can arrive at any given set of target genes (i.e., transcription factors) when the topology of the underlying signaling network is uncertain. Our method tackles this problem for large networks while providing a provably accurate result. Our method follows a divide-and-conquer strategy. We break down the given network into a sequence of non-overlapping subnetworks such that reachability can be computed autonomously and sequentially on each subnetwork. We represent each interaction using a small polynomial. The product of these polynomials express different scenarios when a signal can or cannot reach to target genes from the source genes. We introduce polynomial collapsing operators for each subnetwork. These operators reduce the size of the resulting polynomial and thus the computational complexity dramatically. We show that our method scales to entire human regulatory networks in only seconds, while the existing methods fail beyond a few tens of genes and interactions. We demonstrate that our method can successfully characterize key reachability characteristics of the entire transcriptions regulatory networks of patients affected by eight different subtypes of leukemia, as well as those from healthy control samples. Availability: All the datasets and code used in this article are available at bioinformatics.cise.ufl.edu/PReach/scalable.htm. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


international conference on computational advances in bio and medical sciences | 2014

Characterization of probabilistic signaling networks through signal propagation

Haitham Gabr; Tamer Kahveci

A large volume of research has been done to uncover different characteristics of biological network, such as large-scale organization, node centrality and network robustness. Nevertheless, the vast majority of research done in this area assume that biological networks have deterministic topologies. Biological interactions are however probabilistic events that may or may not appear at different cells or even in the same cell at different times. In this paper, we present results for characterizing H. sapiens probabilistic signaling networks using signal reachability, with respect to (i) centrality of nodes, (ii) stability of the network, and (iii) important network functions.


international conference on bioinformatics | 2013

PReach: Reachability in Probabilistic Signaling Networks

Haitham Gabr; Andrei Todor; Helia Zandi; Alin Dobra; Tamer Kahveci

Extracellular molecules trigger a response inside the cell by initiating a signal at special membrane receptors (i.e., sources) which is then transmitted to reporters (i.e., targets) through various chains of interactions among proteins. Understanding whether such a signal can reach from membrane receptors to reporters is essential in studying the cell response to extracellular events. This problem is drastically complicated due to the unreliability of the interaction data. In this paper, we develop a novel method, called PReach (Probabilistic Reachability), that precisely computes the probability that a signal can reach from a given collection of receptors to a given collection of reporters when the underlying signaling network is uncertain. This is a very difficult computational problem with no known polynomial-time solution. PReach represents each uncertain interaction as a bivariate polynomial. It transforms the reachability problem to a polynomial multiplication problem. We introduce novel polynomial collapsing operators that associate polynomial terms with possible paths between sources and targets as well as the cuts that separate sources from targets. These operators significantly shrink the number of polynomial terms and thus the running time. PReach has much better time complexity than the recent solutions for this problem. Our experimental results on real datasets demonstrate that this improvement leads to orders of magnitude of reduction in the running time over the most recent methods.


IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2015

Reachability analysis in probabilistic biological networks

Haitham Gabr; Andrei Todor; Alin Dobra; Tamer Kahveci

Extra-cellular molecules trigger a response inside the cell by initiating a signal at special membrane receptors (i.e., sources), which is then transmitted to reporters (i.e., targets) through various chains of interactions among proteins. Understanding whether such a signal can reach from membrane receptors to reporters is essential in studying the cell response to extra-cellular events. This problem is drastically complicated due to the unreliability of the interaction data. In this paper, we develop a novel method, called PReach (Probabilistic Reachability), that precisely computes the probability that a signal can reach from a given collection of receptors to a given collection of reporters when the underlying signaling network is uncertain. This is a very difficult computational problem with no known polynomial-time solution. PReach represents each uncertain interaction as a bi-variate polynomial. It transforms the reachability problem to a polynomial multiplication problem. We introduce novel polynomial collapsing operators that associate polynomial terms with possible paths between sources and targets as well as the cuts that separate sources from targets. These operators significantly shrink the number of polynomial terms and thus the running time. PReach has much better time complexity than the recent solutions for this problem. Our experimental results on real data sets demonstrate that this improvement leads to orders of magnitude of reduction in the running time over the most recent methods. Availability: All the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/PReach/.


pacific symposium on biocomputing | 2012

From uncertain protein interaction networks to signaling pathways through intensive color coding.

Haitham Gabr; Alin Dobra; Tamer Kahveci

Discovering signaling pathways in protein interaction networks is a key ingredient in understanding how proteins carry out cellular functions. These interactions however can be uncertain events that may or may not take place depending on many factors including the internal factors, such as the size and abundance of the proteins, or the external factors, such as mutations, disorders and drug intake. In this paper, we consider the problem of finding causal orderings of nodes in such protein interaction networks to discover signaling pathways. We adopt color coding technique to address this problem. Color coding method may fail with some probability. By allowing it to run for sufficient time, however, its confidence in the optimality of the result can converge close to 100%. Our key contribution in this paper is elimination of the key conservative assumptions made by the traditional color coding methods while computing its success probability. We do this by carefully establishing the relationship between node colors, network topology and success probability. As a result our method converges to any confidence value much faster than the traditional methods. Thus, it is scalable to larger protein interaction networks and longer signaling pathways than existing methods. We demonstrate, both theoretically and experimentally that our method outperforms existing methods.


international conference on bioinformatics | 2015

Estimating reachability in dense biological networks

Haitham Gabr; Alin Dobra; Tamer Kahveci

Biological networks provide a holistic view for modeling and analysis of interactions among various kinds of gene products. Finding whether a signal can successfully arrive at a target gene from a given source gene is one of the key problems on biological networks. This is also known as the reachability problem. Computing the probability of signal reachability is a #P-complete problem. This complexity stems from the inherent uncertainty of the interactions. Existing methods fail to scale to large and dense networks. In this paper, we develop a novel method to estimate the reachability probability in probabilistic biological networks. We develop a general theory for utilizing Monte Carlo sampling to solve this problem with a mathematically proven confidence bound on the result. We present three alternative sampling approaches which follow our theory. We experimentally validate our theory, and compare the performance of our method with the state of the art PReach method. We finally use our method to analyze reachability in cell growth and death pathways in different cancer types, which was impossible using existing methods due to the large scale of the networks.


BMC Bioinformatics | 2015

Signal reachability facilitates characterization of probabilistic signaling networks

Haitham Gabr; Tamer Kahveci

BackgroundStudying biological networks is of extreme importance in understanding cellular functions. These networks model interactions between molecules in each cell. A large volume of research has been done to uncover different characteristics of biological networks, such as large-scale organization, node centrality and network robustness. Nevertheless, the vast majority of research done in this area assume that biological networks have deterministic topologies. Biological interactions are however probabilistic events that may or may not appear at different cells or even in the same cell at different times.ResultsIn this paper, we present novel methods for characterizing probabilistic signaling networks. Our methods do this by computing the probability that a signal propagates successfully from receptor to reporter genes through interactions in the network. We characterize such networks with respect to (i) centrality of individual nodes, (ii) stability of the entire network, and (iii) important functions served by the network. We use these methods to characterize major H. sapiens signaling networks including Wnt, ErbB and MAPK.


international conference on bioinformatics | 2015

Computing interaction probabilities in signaling networks

Haitham Gabr; Juan Carlos Rivera-Mulia; David M. Gilbert; Tamer Kahveci

Biological networks inherently have uncertain topologies. This arises from many factors. For instance, interactions between molecules may or may not take place under varying conditions. Genetic or epigenetic mutations may also alter biological processes like transcription or translation. This uncertainty is often modeled by associating each interaction with a probability value. Studying biological networks under this probabilistic model has already been shown to yield accurate and insightful analysis of interaction data. However, the problem of assigning accurate probability values to interactions remains unresolved. In this paper, we present a novel method for computing interaction probabilities in signaling networks based on transcription levels of genes. The transcription levels define the signal reachability probability between membrane receptors and transcription factors. Our method computes the interaction probabilities that minimize the gap between the observed and the computed signal reachability probabilities. We evaluate our method on four signaling networks from KEGG. For each network, we compute its edge probabilities using the gene expression profiles for seven major leukemia subtypes. We use these values to analyze how the stress induced by different leukemia subtypes affect signaling interactions.


international conference on bioinformatics | 2013

Reachability analysis in large probabilistic biological networks

Andrei Todor; Haitham Gabr; Alin Dobra; Tamer Kahveci

Extra-cellular molecules trigger a response inside the cell by initiating a signal at special membrane receptors (i.e., sources), which is then transmitted to reporters (i.e., targets) through various chains of interactions among proteins. Understanding whether such a signal can reach from membrane receptors to reporters is essential in studying the cell response to extra-cellular events. This problem is drastically complicated due to the unreliability of the interaction data. In this paper, we develop a novel method, called PReach (Probabilistic Reachability), that precisely computes the probability that a signal can reach from a given collection of receptors to a given collection of reporters when the underlying signaling network is uncertain. This is a very difficult computational problem with no known polynomial-time solution. PReach represents each uncertain interaction as a bi-variate polynomial. It transforms the reachability problem to a polynomial multiplication problem. We introduce novel polynomial collapsing operators that associate polynomial terms with possible paths between sources and targets as well as the cuts that separate sources from targets. These operators significantly shrink the number of polynomial terms and thus the running time. PReach has much better time complexity than the recent solutions for this problem. Our experimental results on real data sets demonstrate that this improvement leads to orders of magnitude of reduction in the running time over the most recent methods. Availability: All the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/PReach/.

Collaboration


Dive into the Haitham Gabr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanne F. Loring

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge