Haixia Huang
Capital Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haixia Huang.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2010
Wei Wang; Haixia Huang; Dongyan Hou; Ping Liu; Hua Wei; Xiaosuo Fu; Weizhen Niu
Stretch sensitivity of Ca²(+)-activated large-conductance K(+) channels (BK(Ca)) has been observed in a variety of cell types and considered to be a potential mechanism in mechanoelectric transduction (MET). Mechanical stress is a major stimulator for the smooth muscle in the gastrointestinal (GI) tract. However, much about the role and mechanism of MET in GI smooth muscles remains unknown. The BK(Ca) shows a functional diversity due to intensive Slo I alternative splicing and different α/β-subunit assembly in various cells. The stress-regulated exon (STREX) insert is suggested to be an indispensable domain for the mechanosensitivity of BK(Ca). The purpose of this study was to determine whether the BK(Ca) in colonic myocytes of the adult mouse is sensitive to mechanical stimulation and whether the STREX insert is a crucial segment for the BK(Ca) mechanosensitivity. The α- and β1-subunit mRNAs and the α-subunit protein of the BK(Ca) channels were detected in the colonic muscularis. We found that the BK(Ca) STREX-lacking variant was abundantly expressed in the smooth muscle, whereas the STREX variant was not detectable. We demonstrated that the STREX-lacking BK(Ca) channels were also sensitive to membrane stretch. We suggest that in addition to the STREX domain, there are other additional structures in the channel responsible for mechanically coupling with the cell membrane.
PLOS ONE | 2013
Haixia Huang; Chilman Bae; Frederick Sachs; Thomas M. Suchyna
Mutations that lead to muscular dystrophy often create deficiencies in cytoskeletal support of the muscle sarcolemma causing hyperactive mechanosensitive cation channel (MSC) activity and elevated intracellular Ca2+. Caveolae are cholesterol-rich microdomains that form mechanically deformable invaginations of the sarcolemma. Mutations to caveolin-3, the main scaffolding protein of caveolae in muscle, cause Limbe-Girdle muscular dystrophy. Using genetic and acute chemical perturbations of developing myotubes we investigated whether caveolae are functionally linked to MSCs. MSC sensitivity was assayed using suction application to patches and probe-induced indentation during whole-cell recordings. Membrane mechanical stress in patches was monitored using patch capacitance/impedance. Cholesterol depletion disrupted caveolae and caused a large increase in MSC current. It also decreased the membrane mechanical relaxation time, likely reflecting cytoskeleton dissociation from the bilayer. Reduction of Cav3 expression with miRNA also increased MSC current and decreased patch relaxation time. In contrast Cav3 overexpression produced a small decrease in MSC currents. To acutely and specifically inhibit Cav3 interactions, we made a chimeric peptide containing the antennapedia membrane translocation domain and the Cav3 scaffolding domain (A-CSD3). A-CSD3 action was time dependent initially producing a mild Ca2+ leak and increased MSC current, while longer exposures decreased MSC currents coinciding with increased patch stiffening. Images of GFP labeled Cav3 in patches showed that Cav3 doesn’t enter the pipette, showing patch composition differed from the cell surface. However, disruption via cholesterol depletion caused Cav3 to become uniformly distributed over the sarcolemma and Cav3 appearance in the patch dome. The whole-cell indentation currents elicited under the different caveolae modifying conditions mirror the patch response supporting the role of caveolae in MSC function. These studies show that normal expression levels of Cav3 are mechanoprotective to the sarcolemma through multiple mechanisms, and Cav3 upregulation observed in some dystrophies may compensate for other mechanical deficiencies.
The Journal of Membrane Biology | 2008
Xuxia Liu; Haixia Huang; Wei Wang; Jun Wang; Frederick Sachs; Weizhen Niu
Stress in the lipids of the cell membrane may be responsible for activating stretch-activated channels (SACs) in nonspecialized sensory cells such as cardiac myocytes, where they are likely to play a role in cardiac mechanoelectric feedback. We examined the influence of the mechanical microenvironment on the gating of stretch-activated potassium channels (SAKCs) in rat atrial myocytes. The goal was to examine the role of the cytoskeleton in the gating process. We recorded from blebs that have minimal cytoskeleton and cells treated with cytochalasin B (cyto-B) to disrupt filamentous actin. Histochemical and electron microscopic techniques confirmed that the bleb membrane was largely free of F-actin. Channel currents showed mechanosensitivity and potassium selectivity and were activated by low pH and arachidonic acid, similar to properties of TREK-1. Some patches showed a time-dependent decrease in current that may be adaptation or inactivation, and since this decrease appeared in control cells and blebs, it is probably not the result of adaptation in the cytoskeleton. Cyto-B treatment and blebbing caused an increase in background channel activity, suggesting a transfer of stress from actin to bilayer and then to the channel. The slope sensitivity of gating before and after cyto-B treatment was similar to that of blebs, implying the characteristic change of dimensions associated with channel gating was the same in the three mechanical environments. The mechanosensitivity of SAKCs appears to be the result of interaction with membrane lipids and not of direct involvement of the cytoskeleton.
PLOS ONE | 2013
Haixia Huang; Lifang Liang; Ping Liu; Hua Wei; Frederick Sachs; Weizhen Niu; Wei Wang
Cardiac KATP channels link metabolism with electrical activity. They are implicated in arrhythmias, secretion of atrial natriuretic peptide and protection of the heart from hypertrophy and failure. These processes may involve mechanosensitivity. KATP channels can be activated by mechanical stimulation and disrupting the cortical actin increases the activity. We propose that KATP channels are modulated by local bilayer tension and this tension is affected by cortical F-actin. Here we measured KATP background activity and stretch sensitivity with inside-out patches of rat ventricular myocytes before and after disrupting F-actin. Disrupting F-actin potentiated background activity but did not influence the slope sensitivity in the semilog relationship of NPo vs. suction that is a measure of the change in dimensions between closed and open states. Thus actin alters prestress on the channel probably by parallel elastic sharing of mean cortical tension with the bilayer.
BioMed Research International | 2013
Teng Liu; Dan-dan Hou; Qian Zhao; Wei Liu; Panpan Zhen; Jian-ping Xu; Ke Wang; Haixia Huang; Xiao Li; Hui Zhang; Haibo Xu; Wen Wang
Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases. The enhanced nitrative stress plays an important role in homocysteine-induced endothelial dysfunction. Previous studies have showed that phytoestrogen α-zearalanol alleviated endothelial injury in ovariectomized hyperhomocysteinemic rats; however, the underlying mechanism remains to be clarified. This study was to investigate the effects of α-zearalanol on homocysteine-induced endothelial apoptosis in vitro and explore the possible role of nitrative stress in these effects. Results showed that homocysteine (500 μmol/L, 24 h) induced the apoptosis of human umbilical vein endothelial cells (HUVECs) obviously, and this effect was significantly attenuated by pretreatment with α-zearalanol (10−8~10−6 mol/L). Moreover, α-zearalanol downregulated proapoptotic protein Bax, upregulated antiapoptotic proteins Bcl-2 and Bcl-XL, and decreased the expression and activity of caspase-9. These findings demonstrated that α-zearalanol could effectively alleviate homocysteine-induced endothelial apoptosis, and this antiapoptosis effect might be related to the inhibition of the intrinsic pathway. Western blot indicated an enhanced 3-nitrotyrosine expression in HUVECs when challenged with homocysteine, which was attenuated by pretreatment with α-zearalanol. This result implied that inhibition of nitrative stress might play a role in the protective effect of α-zearalanol on endothelial cells. Such discovery may shed a novel light on the antiatherogenic activities of α-zearalanol in hyperhomocysteinemia.
Experimental Physiology | 2009
Haixia Huang; Hua Wei; Ping Liu; Wei Wang; Frederick Sachs; Weizhen Niu
Transient stretching of the ventricle can trigger arrhythmias and evoke ventricular fibrillation, especially when the stimulation occurs in the vulnerable period. To explore the sensitivity of small hearts we used a commercial pressure servo to study the kinetic relationship of left ventricular pressure to excitability and arrhythmias in the rat heart. Stimulation protocols were readily composed on the computer and programmed to vary the stimulus amplitude and timing relative to pacing. The pressure‐induced premature ventricular excitations were similar to those observed in larger hearts, but the convenience of using small hearts allows the use of inexpensive transgenic animals to explore the molecular basis of transduction.
Journal of Cardiovascular Pharmacology and Therapeutics | 2018
Huanyuan Wang; Yi Zhou; Zhiying Guo; Yu Dong; Jiahui Xu; Haixia Huang; Huirong Liu; Wen Wang
Although the contributions of sitagliptin to endothelial function in diabetes mellitus were previously reported, the potential mechanisms still remain undefined. Our research was intended to explore the underlying mechanisms of protective effects of sitagliptin treatment on endothelial dysfunction in Zucker diabetic fatty (ZDF) rats. Male lean nondiabetic Zucker rats were used as control and male obese ZDF rats were randomly divided into ZDF and ZDF + sitagliptin groups. The significant decrease in endothelium-dependent relaxation induced by acetylcholine was observed in mesenteric arteries and thoracic aorta rings of ZDF rats. The administration of sitagliptin restored the vascular function effectively. The morphology study showed severe endothelial injuries in thoracic aortas of ZDF rats, and sitagliptin treatment attenuated these changes. The increased malondialdehyde levels and decreased superoxide dismutase activities in serum of ZDF rats were reversed by sitagliptin treatment. Sitagliptin also increased the expression of endothelial nitric oxide synthase and microtubule-associated protein 1 light chain 3 (LC3) and decreased the expression of inducible nitric oxide synthase, 3-nitrotyrosine, and p62 in ZDF rats. After giving Fe (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride porphyrin pentachloride (FeTMPyP, a peroxynitrite [ONOO−] scavenger) or sitagliptin to high-glucose (30 mmol/L, 48 hours) cultured human umbilical vein endothelial cells (HUVECs), the increased levels of Beclin-1 and lysosome-associated membrane protein type 2 were detected. Both FeTMPyP and sitagliptin also significantly increased the number of mRFP-GFP-LC3 dots per cell, suggesting that autophagic flux was increased in HUVECs. Our study indicated that sitagliptin treatment can improve the endothelium-dependent relaxation and attenuate the endothelial impairment of ZDF rats. The protective effects of sitagliptin are possibly related to antiperoxynitrite and promoting autophagy.
BioMed Research International | 2016
Jie Ren; Fang Xin; Ping Liu; Haiyan Zhao; Sitao Zhang; Peng Han; Haixia Huang; Wei Wang
Stretch-induced relaxation has not been clearly identified in gastrointestinal tract. The present study is to explore the role of large conductance calcium-activated potassium channels (BKCa) in stretch-induced relaxation of colon. The expression and currents of BKCa were detected and the basal muscle tone and contraction amplitude of colonic smooth muscle strips were measured. The expression of BKCa in colon is higher than other GI segments (P < 0.05). The density of BKCa currents was very high in colonic smooth muscle cells (SMCs). BKCa in rat colonic SMCs were sensitive to stretch. The relaxation response of colonic SM strips to stretch was attenuated by charybdotoxin (ChTX), a nonspecific BKCa blocker (P < 0.05). After blocking enteric nervous activities by tetrodotoxin (TTX), the stretch-induced relaxation did not change (P > 0.05). Still, ChTX and iberiotoxin (IbTX, a specific BKCa blocker) attenuated the relaxation of the colonic muscle strips enduring stretch (P < 0.05). These results suggest stretch-activation of BKCa in SMCs was involved in the stretch-induced relaxation of colon. Our study highlights the role of mechanosensitive ion channels in SMCs in colon motility regulation and their physiological and pathophysiological significance is worth further study.
PLOS ONE | 2015
Wen Su; Weiping Li; Hui Chen; Huirong Liu; Haixia Huang; Hongwei Li
Background We have previously reported that high glucose impairs coronary vasodilation by reducing voltage-gated K+ (Kv) channel activity. However, the underlying mechanisms remain unknown. Advanced glycation end products (AGEs) are potent factors that contribute to the development of diabetic vasculopathy. The aim of this study was to investigate the role of AGEs in high glucose-induced impairment of Kv channels-mediated coronary vasodilation. Methods Patch-clamp recording and molecular biological techniques were used to assess the function and expression of Kv channels. Vasodilation of isolated rat small coronary arteries was measured using a pressurized myograph. Treatment of isolated coronary vascular smooth muscle cells (VSMCs) and streptozotocin-induced diabetic rats with aminoguanidine, the chemical inhibitor of AGEs formation, was performed to determine the contribution of AGEs. Results Incubation of VSMCs with high glucose reduced Kv current density by 60.4 ± 4.8%, and decreased expression of Kv1.2 and Kv1.5 both at the gene and protein level, whereas inhibiting AGEs formation or blocking AGEs interacting with their receptors prevented high glucose-induced impairment of Kv channels. In addition, diabetic rats manifested reduced Kv channels-mediated coronary dilation (9.3 ± 1.4% vs. 36.9 ± 1.4%, P < 0.05), which was partly corrected by the treatment with aminoguanidine (24.4 ± 2.2% vs. 9.3 ± 1.4%, P < 0.05). Conclusions Excessive formation of AGEs impairs Kv channels in VSMCs, then leading to attenuation of Kv channels-mediated coronary vasodilation.
Journal of Cardiovascular Pharmacology | 2016
Qi Sun; Yu Dong; Huanyuan Wang; Kun Jiao; Jiahui Xu; Lu Ma; Haixia Huang; Huirong Liu; Wen Wang
Abstract: Numerous studies have found that the age-associated structural and functional alterations in arteries were characterized by increased endothelial dysfunction. In this study, young (3 months), adult (9 months), and aging (20 months) male Sprague-Dawley rats were randomly divided into 6 groups, including control groups and FeTMPyP (peroxynitrite scavenger) groups receiving saline and FeTMPyP, respectively, for 5 administrations once every 3 days through intraperitoneal injection. The aged-related proteins beta-galactosidase, p53, and p16 as well as the nitrotyrosine and endothelial marker endothelial nitric oxide synthase and von Willebrand factor (vWF) in vascular tissues were measured by immunohistochemistry. Endothelium-dependent vasorelaxation and endothelium-independent vasorelaxation of rat thoracic aortas and mesenteric arteries were measured by acetylcholine and sodium nitroprusside, respectively. The amount of circulating endothelial progenitor cells (EPCs) was determined by flow cytometry. The endothelium-dependent/independent relaxation in mesenteric arteries and the amount of circulating EPCs (CD31+/CD34+) in peripheral blood of aging rats were reduced significantly compared with young and adult rats. Immunohistochemistry results showed that the nitrotyrosine levels and morphological damage in mesenteric arteries were increased significantly in aging rats. Adoption of peroxynitrite scavenger FeTMPyP intervention may not only improve the endothelium-dependent relaxation and the amount of circulating EPCs in aging rats but also reverse endothelial injury. In conclusion, this study demonstrates that enhanced nitrative stress may aggravate the endothelial injury and vascular dysfunction of resistance arteries in aging rats. Antiperoxynitrite treatment can ameliorate the vasorelaxation and may be involved with the protection of circulating EPCs.