Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haiyan Zeng.
Scientific Reports | 2017
Haiyan Zeng; Jumei Zhang; Chensi Li; Tengfei Xie; Na Ling; Qingping Wu; Yingwang Ye
Cronobacter sakazakii is an important foodborne pathogens causing rare but life-threatening diseases in neonates and infants. CRISPR-Cas system is a new prokaryotic defense system that provides adaptive immunity against phages, latter play an vital role on the evolution and pathogenicity of host bacteria. In this study, we found that genome sizes of C. sakazakii strains had a significant positive correlation with total genome sizes of prophages. Prophages contributed to 16.57% of the genetic diversity (pan genome) of C. sakazakii, some of which maybe the potential virulence factors. Subtype I-E CRISPR-Cas system and five types of CRISPR arrays were found in the conserved site of C. sakazakii strains. CRISPR1 and CRISPR2 loci with high variable spacers were active and showed potential protection against phage attacks. The number of spacers from two active CRISPR loci in clinical strains was significant less than that of foodborne strains, it maybe a reason why clinical strains were found to have more prophages than foodborne strains. The frequently gain/loss of prophages and spacers in CRISPR loci is likely to drive the quick evolution of C. sakazakii. Our study provides a new insight into the co-evolution of phages and C. sakazakii.
Frontiers in Microbiology | 2018
Moutong Chen; Jianheng Cheng; Qingping Wu; Jumei Zhang; Yuetao Chen; Haiyan Zeng; Qinghua Ye; Shi Wu; Shuzhen Cai; Juan Wang; Yu Ding
Listeria monocytogenes, an intracellular foodborne pathogen, is capable of causing listeriosis, such as meningitis, meningoencephalitis, and abortion. In recent years, the occurrence of Listeria monocytogenes in edible mushroom products has been reported in several countries. There are no guidelines for qualitative and quantitative detection of L. monocytogenes in mushroom products in China. Therefore, this study aimed to investigate the prevalence and contamination level of L. monocytogenes in edible mushrooms in Chinese markets and to determine the antibiotic resistance and sequence types (STs) of these isolates to provide data for risk assessments. Approximately 21.20% (141/665) of edible mushroom samples were positive for L. monocytogenes, while 57.44% (81/141) of positive samples contained contamination levels of less than 10 MPN/g. The 180 isolates derived from positive samples belonged to serogroup I.1 (1/2a-3a, n = 111), followed by serogroup II.2 (1/2b-3b-7, n = 66), and serogroup III (4a-4c, n = 3). Antibiotic susceptibility testing showed that over 95% of L. monocytogenes isolates were resistant to penicillin, ampicillin, oxacillin, and clindamycin, while over 90% were susceptible to 16 antibiotic agents, the mechanisms of resistance remain to be elucidated. According to multilocus sequencing typing, the 180 isolates represented 21 STs, one of which was identified for the first time. Interestingly, ST8 and ST87 were predominant in edible mushroom products, indicating that specific STs may have distinct ecological niches. Potential virulence profiles showed that most of the isolates contained full-length inlA genes, with novel premature stop codons found in isolate 2035-1LM (position 1380, TGG→TGA) and 3419-1LM (position 1474, CAG→TAG). Five isolates belonging to serogroup II.2 carried the llsX gene from Listeria pathogenicity island (LIPI)-3, present in ST224, ST3, and ST619; 53 (29.44%) harbored the ptsA gene from LIPI-4, presenting in ST3, ST5, ST87, ST310, ST1166, and ST619. Five potential hypervirulent isolates carrying all three of these virulence factors were identified, suggesting edible mushrooms may serve as possible transmission routes of potential hypervirulent L. monocytogenes, which may be of great public health concern to consumers. Based on our findings, the exploration of novel approaches to control L. monocytogenes contamination is necessary to ensure the microbiological safety of edible mushroom products.
Frontiers in Microbiology | 2018
Na Ling; Jumei Zhang; Chengsi Li; Haiyan Zeng; Wenjing He; Yingwang Ye; Qingping Wu
Cronobacter species are foodborne pathogens that can cause neonatal meningitis, necrotizing enterocolitis, and sepsis; they have unusual abilities to survive in environmental stresses such as acid stress. However, the factors involved in acid stress responses and biofilm formation in Cronobacter species are poorly understood. In this study, we investigated the role of grxB on cellular morphology, acid tolerance, surface hydrophobicity, auto-aggregation (AAg), motility, and biofilm formation in Cronobacter sakazakii. The deletion of grxB decreased resistance to acid stresses, and notably led to weaker surface hydrophobicity, AAg, and biofilm formation under normal and acid stress conditions, compared with those of the wild type strain; however, motility was unaffected. Therefore, grxB appears to contribute to the survival of C. sakazakii in acid stresses and biofilm formation. This is the first report to provide valuable evidence for the role of grxB in acid stress responses and biofilm formation in C. sakazakii.
Applied and Environmental Microbiology | 2018
Haiyan Zeng; Jumei Zhang; Qingping Wu; Wenjing He; Haoming Wu; Yingwang Ye; Chengsi Li; Na Ling; Moutong Chen; Juan Wang; Shuzhen Cai; Tao Lei; Yu Ding; Liang Xue
ABSTRACT Cronobacter strains harboring the CRISPR-Cas system are important foodborne pathogens causing serious neonatal infections. However, the specific role of the CRISPR-Cas system in bacterial evolution remains relatively unexplored. In this study, we investigated the impact of the CRISPR-Cas system on Cronobacter evolution and obtained 137 new whole-genome Cronobacter sequences by next-generation sequencing technology. Among the strains examined (n = 240), 90.6% (193/213) of prevalent species Cronobacter sakazakii, Cronobacter malonaticus, and Cronobacter dublinensis strains had intact CRISPR-Cas systems. Two rare species, Cronobacter condimenti (n = 2) and Cronobacter universalis (n = 6), lacked and preserved the CRISPR-Cas system at a low frequency (1/6), respectively. These results suggest that the presence of one CRISPR-Cas system is important for a Cronobacter species to maintain genome homeostasis for survival. The Cronobacter ancestral strain is likely to have harbored both subtype I-E and I-F CRISPR-Cas systems; during the long evolutionary process, subtype I-E was retained while subtype I-F selectively degenerated in Cronobacter species and was even lost by the major Cronobacter pathovars. Moreover, significantly higher CRISPR activity was observed in the plant-associated species C. dublinensis than in the virulence-related species C. sakazakii and C. malonaticus. Similar spacers of CRISPR arrays were rarely found among species, suggesting intensive change through adaptive acquisition and loss. Differentiated CRISPR activity appears to be the product of environmental selective pressure and might contribute to the bidirectional divergence and speciation of Cronobacter. IMPORTANCE This study reports the evolutionary history of Cronobacter under the selective pressure of the CRISPR-Cas system. One CRISPR-Cas system in Cronobacter is important for maintaining genome homeostasis, whereas two types of systems may be redundant and not conducive to acquiring beneficial DNA for environmental adaptation and pathogenicity. Differentiated CRISPR activity has contributed to the bidirectional divergence and genetic diversity of Cronobacter. This perspective makes a significant contribution to the literature by providing new insights into CRISPR-Cas systems in general, while further expanding the roles of CRISPR beyond conferring adaptive immunity and demonstrating a link to adaptation and species divergence in a genus. Moreover, our study provides new insights into the balance between genome homeostasis and the uptake of beneficial DNA related to CRISPR-based activity in the evolution of Cronobacter.
Journal of Dairy Science | 2018
Yingwang Ye; Na Ling; Jina Gao; Xiyan Zhang; Maofeng Zhang; Liaowang Tong; Haiyan Zeng; Jumei Zhang; Qingping Wu
Cronobacter sakazakii is an important foodborne pathogen associated with rare but severe infections through consumption of powdered infant formula. Tolerance to osmotic stress in Cronobacter has been described. However, the detailed factors involved in tolerance to osmotic stress in C. sakazakii are poorly understood. In this study, roles of outer membrane protein W (OmpW) on survival rates, morphologic changes of cells, and biofilm formation in C. sakazakii under different NaCl concentrations between wild type (WT) and OmpW mutant (ΔOmpW) were determined. The survival rates of ΔOmpW in Luria-Bertani medium with 3.5% or 5.5% NaCl were reduced significantly, and morphological injury of ΔOmpW was significantly increased compared with survival and morphology of WT. Compared with biofilm formation of the WT strain, biofilms in ΔOmpW were significantly increased in Luria-Bertani with 3.5% or 5.5% NaCl using crystal violet staining assay after 48 and 72 h of incubation. Detection of biofilms using confocal laser scanning microscopy and scanning electron microscopy further confirmed the changes of biofilm formation under different NaCl stresses. This study demonstrates that OmpW contributes to survival of cells in planktonic mode under NaCl stresses, and biofilm formation is increased in ΔOmpW in response to NaCl stress.
Frontiers in Microbiology | 2018
Moutong Chen; Jianheng Cheng; Qingping Wu; Jumei Zhang; Yuetao Chen; Liang Xue; Tao Lei; Haiyan Zeng; Shi Wu; Qinghua Ye; Jianling Bai; Juan Wang
Listeria monocytogenes is an important Gram-positive foodborne pathogen. However, limited information is available on the comprehensive investigation and potential risk of L. monocytogenes in fresh aquatic products, which are popular to consumers in China. This study aimed to determine the occurrence, virulence profiles, and population diversity of L. monocytogenes isolated from aquatic products in China. In total, 846 aquatic product samples were collected between July 2011 and April 2016 from 43 cities in China. Approximately 7.92% (67/846) aquatic product samples were positive for L. monocytogenes, 86.57% positive samples ranged from 0.3 to 10 MPN/g, whereas 5.97% showed over 110 MPN/g by the Most Probable Number method, which included two samples of products intended to be eaten raw. Serogroups I.1 (serotype 1/2a), I.2 (serotype 1/2b), and III (serotype 4c) were the predominant serogroups isolated, whereas serogroup II.1 (serotype 4b) was detected at much lower frequencies. Examination of antibacterial resistance showed that nine antibacterial resistance profiles were exhibited in 72 isolates, a high level susceptibility of 16 tested antibiotics against L. monocytogenes were observed, indicating these common antibacterial agents are still effective for treating L. monocytogenes infection. Multilocus sequence typing revealed that ST299, ST87, and ST8 are predominant in aquatic products, indicating that the rare ST299 (serotype 4c) may have a special ecological niche in aquatic products and associated environments. Except llsX and ptsA, the 72 isolates harbor nine virulence genes (prfA, actA, hly, plcA, plcB, iap, mpl, inlA, and inlB), premature stop codons (PMSCs) in inlA were found in four isolates, three of which belonged to ST9. A novel PMSC was found in 2929-1LM with a nonsense mutation at position 1605 (TGG→TGA). All ST87 isolates harbored the ptsA gene, whereas 8 isolates (11.11%) carried the llsX gene, and mainly belonged to ST1, ST3, ST308, ST323, ST330, and ST619. Taken together, these results first reported potential virulent L. monocytogenes isolates (ST8 and ST87) were predominant in aquatic products which may have implications for public health in China. It is thus necessary to perform continuous surveillance for L. monocytogenes in aquatic products in China.
Frontiers in Microbiology | 2018
Na Ling; Chengsi Li; Jumei Zhang; Qingping Wu; Haiyan Zeng; Wenjing He; Yingwang Ye; Juan Wang; Yu Ding; Moutong Chen; Liang Xue; Qinghua Ye; Weipeng Guo
Cronobacter spp. is a foodborne pathogen that causes life-threatening and invasive diseases, such as necrotizing enterocolitis, meningitis, and sepsis. In this study, we aimed to investigate the prevalence, molecular characteristics and antimicrobial resistance of Cronobacter spp. in raw vegetables marketed in China. Based on dietary habits in China, 403 raw vegetables that could be eaten without additional cooking were collected. Of the 403 samples tested, 122 (30.27%) were positive for Cronobacter spp., and the contamination levels exceeded 110 most probable number (MPN)/g for 16.39% (20/122) of the samples. Coriander samples had the highest contamination rate of 52.81%, and the MPN values of 19.15% of positive coriander samples exceeded 100 MPN/g. Eleven serotypes were identified among 171 isolates, with Cronobacter sakazakii serogroup O1 (41 isolates) being the dominant serotype. Molecular characterization indicated that there was quite high genetic diversity in Cronobacter spp., and multilocus sequence typing analyses yielded 106 sequence types (STs), 55 of which were newly identified. Notably, the most prevalent ST (eight isolates) was C. malonaticus ST60, which appeared in a recent clinical infectious disease study in China. Five C. sakazakii ST4, seven C. malonaticus ST7, and three C. sakazakii ST8 confirmed as pathogenic STs in other countries were also detected in this study. Furthermore, all isolates were susceptible to amikacin, amoxicillin-clavulanic, cefepime, ciprofloxacin, and imipenem, but some isolates exhibited a high ratio of resistance to cephalothin (59.65%). In this study, the high contamination rate and the detection of pathogenic and new STs in raw vegetables indicated potential hazards to customers. To the best of our knowledge, this is the first report to provide valuable information on the contamination status of Cronobacter spp. in vegetables that can be eaten raw in China.
Frontiers in Microbiology | 2018
Tiantian Gao; Yu Ding; Qingping Wu; Juan Wang; Jumei Zhang; Shubo Yu; Pengfei Yu; Chengcheng Liu; Li Kong; Zhao Feng; Moutong Chen; Shi Wu; Haiyan Zeng; Haoming Wu
Bacillus cereus is a common and important food-borne pathogen that can be found in various food products. Due to low-temperature sterilization for a short period of time, pasteurization is not sufficient for complete elimination of B. cereus in milk, thereby cause severe economic loss and food safety problems. It is therefore of paramount importance to perform risk assessment of B. cereus in pasteurized milk. In this study, we isolated B. cereus from pasteurized milk samples in different regions of China, and evaluated the contamination situation, existence of virulence genes, antibiotic resistance profile and genetic polymorphism of B. cereus isolates. Intriguingly, 70 samples (27%) were found to be contaminated by B. cereus and the average contamination level was 111 MPN/g. The distribution of virulence genes was assessed toward 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, bceT, and hlyII) and one emetic gene (cesB). Forty five percent strains harbored enterotoxigenic genes hblACD and 93% isolates contained nheABC gene cluster. The positive rate of cytK, entFM, bceT, hlyII, and cesB genes were 73, 96, 75, 54, and 5%, respectively. Antibiotic susceptibility assessment showed that most of the isolates were resistant to β-lactam antibiotics and rifampicin, but susceptible to other antibiotics such as ciprofloxacin, gentamicin and chloramphenicol. Total multidrug-resistant population was about 34%. In addition, B. cereus isolates in pasteurized milk showed a high genetic diversity. In conclusion, our findings provide the first reference on the prevalence, contamination level and characteristics of B. cereus isolated from pasteurized milk in China, suggesting a potential high risk of B. cereus to public health and dairy industry.
Emerging Infectious Diseases | 2018
Haiyan Zeng; Tao Lei; Wenjing He; Jumei Zhang; Bingshao Liang; Chengsi Li; Na Ling; Yu Ding; Shi Wu; Juan Wang; Qingping Wu
We report a case of meningitis in a neonate in China, which was caused by a novel multidrug-resistant Cronobacter sakazakii strain, sequence type 256, capsular profile K1:CA1. We identified genetic factors associated with bacterial pathogenicity and antimicrobial drug resistance in the genome and plasmids. Enhanced surveillance of this organism is warranted.
Scientific Reports | 2017
Haiyan Zeng; Jumei Zhang; Chensi Li; Tengfei Xie; Na Ling; Qingping Wu; Yingwang Ye
Scientific Reports 7: Article number: 40206; published online: 06 January 2017; updated: 26 April 2017. This Article contains an error in Figure 2, where the translation orientation of the hypothetical gene adjacent to CRISPR3 is reversed. In addition, the location of citB and speC beside CRISPR4, along with the sequence logo of CRISPR4 repeats should be reversed.