Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haiying Qin is active.

Publication


Featured researches published by Haiying Qin.


Nature Communications | 2016

CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity

Elad Jacoby; Sang M. Nguyen; Thomas J. Fountaine; Kathryn Welp; Berkley Gryder; Haiying Qin; Yinmeng Yang; Christopher D. Chien; Alix E. Seif; Haiyan Lei; Young K. Song; Javed Khan; Daniel W. Lee; Crystal L. Mackall; Rebecca A. Gardner; Michael C. Jensen; Jack F. Shern; Terry J. Fry

Adoptive immunotherapy using chimeric antigen receptor (CAR) expressing T cells targeting the CD19 B lineage receptor has demonstrated marked success in relapsed pre-B-cell acute lymphoblastic leukaemia (ALL). Persisting CAR-T cells generate sustained pressure against CD19 that may drive unique mechanisms of resistance. Pre-B ALL originates from a committed pre-B cell or an earlier progenitor, with potential to reprogram into other hematopoietic lineages. Here we report changes in lineage markers including myeloid conversion in patients following CD19 CAR therapy. Using murine ALL models we study the long-term effects of CD19 CAR-T cells and demonstrate partial or complete lineage switch as a consistent mechanism of CAR resistance depending on the underlying genetic oncogenic driver. Deletion of Pax5 or Ebf1 recapitulates lineage reprogramming occurring during CD19 CAR pressure. Our findings establish lineage switch as a mechanism of CAR resistance exposing inherent plasticity in genetic subtypes of pre-B-cell ALL.


Nature Medicine | 2017

CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy

Terry J. Fry; Nirali N. Shah; Rimas J. Orentas; Maryalice Stetler-Stevenson; Constance Yuan; Sneha Ramakrishna; Pamela L. Wolters; Staci Martin; Cindy Delbrook; Bonnie Yates; Haneen Shalabi; Thomas J. Fountaine; Jack F. Shern; Robbie G. Majzner; David F. Stroncek; Marianna Sabatino; Yang Feng; Dimiter S. Dimitrov; Ling Zhang; Sang Nguyen; Haiying Qin; Boro Dropulic; Daniel W. Lee; Crystal L. Mackall

Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent effects in relapsed and/or refractory pre–B cell acute lymphoblastic leukemia (B-ALL), but antigen loss is a frequent cause of resistance to CD19-targeted immunotherapy. CD22 is also expressed in most cases of B-ALL and is usually retained following CD19 loss. We report results from a phase 1 trial testing a new CD22-targeted CAR (CD22-CAR) in 21 children and adults, including 17 who were previously treated with CD19-directed immunotherapy. Dose-dependent antileukemic activity was observed, with complete remission obtained in 73% (11/15) of patients receiving ≥1 × 106 CD22-CAR T cells per kg body weight, including 5 of 5 patients with CD19dim or CD19− B-ALL. Median remission duration was 6 months. Relapses were associated with diminished CD22 site density that likely permitted CD22+ cell escape from killing by CD22-CAR T cells. These results are the first to establish the clinical activity of a CD22-CAR in B-ALL, including leukemia resistant to anti-CD19 immunotherapy, demonstrating potency against B-ALL comparable to that of CD19-CAR at biologically active doses. Our results also highlight the critical role played by antigen density in regulating CAR function.Chimeric antigen receptor (CAR) T-cells targeting CD19 mediate potent effects in relapsed/refractory pre-B cell acute lymphoblastic leukemia (B-ALL) but antigen loss is a frequent cause of resistance to CD19-targeted immunotherapy. CD22 is also expressed on most B-ALL and usually retained following CD19 loss. We report results from a phase I trial testing a novel CD22-CAR in twenty-one children and adults, including 17 previously treated with CD19-directed immunotherapy. Dose dependent anti-leukemic activity was observed with complete remission in 73% (11/15) of patients receiving ≥ 1 × 106 CD22-CART cells/kg, including 5/5 patients with CD19dim/neg B-ALL. Median remission duration was 6 months. Relapses were associated with diminished CD22 site density that likely permitted escape from killing by CD22-CART cells. These results are the first to eastablish the clinical activity of a CD22-CAR in pre-B cell ALL, including in leukemia resistant to anti-CD19 immunotherapy, demonstrating comparable potency to CD19-CART at biologically active doses in B-ALL. They also highlight the critical role played by antigen density in regulating CAR function. (Funded by NCI Intramural Research Program)


Blood | 2016

Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies

Marianna Sabatino; Jinhui Hu; Michele Sommariva; Sanjivan Gautam; Vicki Fellowes; James Hocker; Sean Dougherty; Haiying Qin; Christopher A. Klebanoff; Terry J. Fry; Ronald E. Gress; James N. Kochenderfer; David F. Stroncek; Yun Ji; Luca Gattinoni

Long-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound and sustained tumor regression but their rareness poses a major hurdle to their clinical application. Presently, clinically compliant procedures to generate relevant numbers of this T-cell population are undefined. Here, we provide a strategy for deriving large numbers of clinical-grade tumor-redirected TSCM starting from naive precursors. CD8(+)CD62L(+)CD45RA(+) naive T cells enriched by streptamer-based serial-positive selection were activated by CD3/CD28 engagement in the presence of interleukin-7 (IL-7), IL-21, and the glycogen synthase-3β inhibitor TWS119, and genetically engineered to express a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions enabled the generation of CD19-CAR-modified CD8(+) TSCM that were phenotypically, functionally, and transcriptomically equivalent to their naturally occurring counterpart. Compared with CD8(+) T cells generated with clinical protocols currently under investigation, CD19-CAR-modified CD8(+) TSCM exhibited enhanced metabolic fitness and mediated robust, long-lasting antitumor responses against systemic acute lymphoblastic leukemia xenografts. This clinical-grade platform provides the basis for a phase 1 trial evaluating the activity of CD19-CAR-modified CD8(+) TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell transplantation.


Blood | 2015

Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein

Haiying Qin; Monica Cho; Waleed Haso; Ling Zhang; Sarah K. Tasian; Htoo Zarni Oo; Gian Luca Negri; Yongshun Lin; Jizhong Zou; Barbara S. Mallon; Shannon L. Maude; David T. Teachey; David M. Barrett; Rimas J. Orentas; Mads Daugaard; Poul Sorensen; Stephan A. Grupp; Terry J. Fry

Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting the CD19 B cell-associated protein have demonstrated potent activity against relapsed/refractory B-lineage acute lymphoblastic leukemia (B-ALL). Not all patients respond, and CD19-negative relapses have been observed. Overexpression of the thymic stromal lymphopoietin receptor (TSLPR; encoded by CRLF2) occurs in a subset of adults and children with B-ALL and confers a high risk of relapse. Recent data suggest the TSLPR signaling axis is functionally important, suggesting that TSLPR would be an ideal immunotherapeutic target. We constructed short and long CARs targeting TSLPR and tested efficacy against CRLF2-overexpressing B-ALL. Both CARs demonstrated activity in vitro, but only short TSLPR CAR T cells mediated leukemia regression. In vivo activity of the short CAR was also associated with long-term persistence of CAR-expressing T cells. Short TSLPR CAR treatment of mice engrafted with a TSLPR-expressing ALL cell line induced leukemia cytotoxicity with efficacy comparable with that of CD19 CAR T cells. Short TSLPR CAR T cells also eradicated leukemia in 4 xenograft models of human CRLF2-overexpressing ALL. Finally, TSLPR has limited surface expression on normal tissues. TSLPR-targeted CAR T cells thus represent a potent oncoprotein-targeted immunotherapy for high-risk ALL.


Blood | 2016

Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal GVHD

Elad Jacoby; Yinmeng Yang; Haiying Qin; Christopher D. Chien; James N. Kochenderfer; Terry J. Fry

Acute lymphoblastic leukemia (ALL) persisting or relapsing following bone marrow transplantation (BMT) has a dismal prognosis. Success with chimeric antigen receptor (CAR) T cells offers an opportunity to treat these patients with leukemia-redirected donor-derived T cells, which may be more functional than T cells derived from patients with leukemia but have the potential to mediate graft-versus-host disease (GVHD). We, together with others, have previously demonstrated tumor-specific T-cell dysfunction in the allogeneic environment. Here, we studied CAR T-cell function following BMT using an immunocompetent murine model of minor mismatched allogeneic transplantation followed by donor-derived CD19-CAR T cells. Allogeneic donor-derived CD19-CAR T cells eliminated residual ALL with equal potency to those administered after syngeneic BMT. Surprisingly, allogeneic CAR T cells mediated lethal acute GVHD with early mortality, which is atypical for this minor mismatch model. We demonstrated that both allogeneic and syngeneic CAR T cells show initial expansion as effector T cells, with a higher peak but rapid deletion of allogeneic CAR T cells. Interestingly, CAR-mediated acute GVHD was only seen in the presence of leukemia, suggesting CAR-target interactions induced GVHD. Indeed, serum interleukin (IL)-6 was elevated only in the presence of both leukemia and CAR T cells, and IL-6 neutralization ameliorated the severity of GVHD in a delayed donor lymphocyte infusion model. Finally, allogeneic CD4(+) CAR T cells were responsible for GVHD, which correlated with their ability to produce IL-6 upon CAR stimulation. Altogether, we demonstrate that donor-derived allogeneic CAR T cells are active but have the capacity to drive GVHD.


Science Translational Medicine | 2017

TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance

Yinmeng Yang; M. Eric Kohler; Christopher D. Chien; Christopher T. Sauter; Elad Jacoby; Chunhua Yan; Ying Hu; Kelsey Wanhainen; Haiying Qin; Terry J. Fry

TCR engagement induces CD8 CAR T cell exhaustion and poor in vivo functionality in mice. A tale of two receptors Although there has been an explosion of research on chimeric antigen receptor (CAR) T cell therapy, most preclinical studies use transduced human T cells in immunodeficient mice so that the clinical products can be evaluated. However, the endogenous T cell receptors (TCRs) on the human cells are unable to be activated by peptides presented in mouse MHC. To determine how CAR activity is affected by TCR engagement, Yang et al. used a CAR targeting CD19 and multiple types of transgenic T cells in immunocompetent mice. Exposure of CD8 CAR T cells to the antigen recognized by the TCR led to T cell exhaustion, apoptosis, and lack of efficacy; this phenomenon was not observed for CD4 CAR T cells. Their findings demonstrate how considering T cell biology could further improve CAR T cell therapy. Chimeric antigen receptor (CAR)–expressing T cells induce durable remissions in patients with relapsed/refractory B cell malignancies. CARs are synthetic constructs that, when introduced into mature T cells, confer a second, non–major histocompatibility complex–restricted specificity in addition to the endogenous T cell receptor (TCR). The implications of TCR activation on CAR T cell efficacy has not been well defined. Using an immunocompetent, syngeneic murine model of CD19-targeted CAR T cell therapy for pre–B cell acute lymphoblastic leukemia in which the CAR is introduced into T cells with known TCR specificity, we demonstrate loss of CD8 CAR T cell efficacy associated with T cell exhaustion and apoptosis when TCR antigen is present. CD4 CAR T cells demonstrate equivalent cytotoxicity to CD8 CAR T cells and, in contrast, retain in vivo efficacy despite TCR stimulation. Gene expression profiles confirm increased exhaustion and apoptosis of CD8 CAR T cells upon dual receptor stimulation compared to CD4 CAR T cells and indicate inherent differences between CD4 and CD8 CAR T cells in the use of T cell–associated signaling pathways. These results provide insights into important aspects of CAR T cell immune biology and indicate opportunities to rationally design CAR constructs to optimize clinical efficacy.


Blood | 2014

Absence of STAT1 in donor-derived plasmacytoid dendritic cells results in increased STAT3 and attenuates murine GVHD

Christian M. Capitini; Nicole Nasholm; Christopher D. Chien; Shannon Larabee; Haiying Qin; Young K. Song; Peter Klover; Lothar Hennighausen; Javed Khan; Terry J. Fry

Selective targeting of non-T cells, including antigen-presenting cells (APCs), is a potential strategy to prevent graft-versus-host-disease (GVHD) but to maintain graft-versus-tumor (GVT) effects. Because type I and II interferons signal through signal transducer and activator of transcription-1 (STAT1), and contribute to activation of APCs after allogeneic bone marrow transplant (alloBMT), we examined whether the absence of STAT1 in donor APCs could prevent GVHD while preserving immune competence. Transplantation of STAT1(-/-) bone marrow (BM) prevented GVHD induced by STAT1(+/+) T cells, leading to expansion of B220(+) cells and regulatory T cells. STAT1(-/-) BM also preserved GVT activity and enhanced overall survival of tumor-challenged mice in the setting of GVHD. Furthermore, recipients of allogeneic STAT1(-/-) BM demonstrated increased CD9(-)Siglec H(hi) plasmacytoid dendritic cells (pDCs), and depletion of pDCs after STAT1(-/-) BM transplantation prevented GVHD resistance. STAT1(-/-) pDCs were found to produce decreased free radicals, IFNα, and interleukin (IL)-12, and increased IL-10. Additionally, STAT1(-/-) pDCs that were isolated after alloBMT showed increased gene expression of S100A8 and S100A9, and transplantation of S100A9(-/-) BM reduced GVHD-free survival. Finally, elevated STAT3 was found in STAT1(-/-) pDCs isolated after alloBMT. We conclude that interfering with interferon signaling in APCs such as pDCs provides a novel approach to regulate the GVHD/GVT axis.


Biology of Blood and Marrow Transplantation | 2014

Minor Antigen Distribution Predicts Site-Specific Graft-versus-Tumor Activity of Adoptively Transferred, Minor Antigen-Specific CD8 T Cells

Jessica C. Shand; Haiying Qin; Nicole Nasholm; Christian M. Capitini; Terry J. Fry

The clinical success of allogeneic T cell therapy for cancer relies on the selection of antigens that can effectively elicit antitumor responses with minimal toxicity toward nonmalignant tissues. Although minor histocompatibility antigens (MiHA) represent promising targets, broad expression of these antigens has been associated with poor responses and T cell dysfunction that may not be prevented by targeting MiHA with limited expression. In this study, we hypothesized that antitumor activity of MiHA-specific CD8 T cells after allogeneic bone marrow transplantation (BMT) is determined by the distribution of antigen relative to the site of tumor growth. To test this hypothesis, we utilized the clinically relevant male-specific antigen HY and studied the fate of adoptively transferred, HY-CD8(+) T cells (HY-CD8) against a HY-expressing epithelial tumor (MB49) and pre-B cell leukemia (HY-E2APBX ALL) in BMT recipients. Transplants were designed to produce broad HY expression in nonhematopoietic tissues (female → male BMT, [F → M]), restricted HY expression in hematopoietic tissues (male → female BMT, [M → F]) tissues, and no HY tissue expression (female → female BMT, [F → F]). Broad HY expression induced poor responses to MB49 despite sublethal graft-versus-host disease and accumulation of HY-CD8 in secondary lymphoid tissues. Antileukemia responses, however, were preserved. In contrast, restriction of HY expression to hematopoietic tissues restored MB49 responses but resulted in a loss of antileukemia responses. We concluded that target alloantigen expression in the same compartment of tumor growth impairs CD8 responses to both solid and hematologic tumors.


Journal of Immunotherapy | 2013

A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy

Brynn B. Duncan; Steven L. Highfill; Haiying Qin; Najat Bouchkouj; Shannon Larabee; Peng Zhao; Iwona Woznica; Yuxin Liu; Youhua Li; Wengen Wu; Jack H. Lai; Barry Jones; Crystal L. Mackall; William W. Bachovchin; Terry J. Fry

Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b+) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11b+Ly6-ChiLy6-Glo) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1−/−) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT.


Blood | 2018

Murine Pre-B cell ALL induces T cell dysfunction not fully reversed by introduction of a chimeric antigen receptor

Haiying Qin; Kazusa Ishii; Sang Nguyen; Paul Su; Chad R Burk; Bong-Hyun Kim; Brynn B. Duncan; Samikasha Tarun; Nirali N. Shah; M. Eric Kohler; Terry J. Fry

Adoptive transfer of patient-derived T cells modified to express chimeric antigen receptors (CARTs) has demonstrated dramatic success in relapsed/refractory pre-B-cell acute lymphoblastic leukemia (ALL), but response and durability of remission requires exponential CART expansion and persistence. Tumors are known to affect T-cell function, but this has not been well studied in ALL and in the context of chimeric antigen receptor (CAR) expression. Using TCF3/PBX1 and MLL-AF4-driven murine ALL models, we assessed the impact of progressive ALL on T-cell function in vivo. Vaccines protect against TCF3/PBX1.3 but were ineffective when administered after leukemia injection, suggesting immunosuppression induced early during ALL progression. T cells from leukemia-bearing mice exhibited increased expression of inhibitory receptors, including PD1, Tim3, and LAG3, and were dysfunctional following adoptive transfer in a model of T-cell receptor (TCR)-dependent leukemia clearance. Although expression of inhibitory receptors has been linked to TCR signaling, pre-B-cell ALL induced inhibitory receptor expression, at least in part, in a TCR-independent manner. Finally, introduction of a CAR into T cells generated from leukemia-bearing mice failed to fully reverse poor in vivo function.

Collaboration


Dive into the Haiying Qin's collaboration.

Top Co-Authors

Avatar

Terry J. Fry

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Chien

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elad Jacoby

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yinmeng Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christian M. Capitini

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Rimas J. Orentas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Waleed Haso

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chad R Burk

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Javed Khan

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge