Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haiying Wang is active.

Publication


Featured researches published by Haiying Wang.


Infection and Immunity | 2011

Mouse Relapse Model of Clostridium difficile Infection

Xingmin Sun; Haiying Wang; Yongrong Zhang; Kevin Chen; Barbara J. Davis; Hanping Feng

ABSTRACT Clostridium difficile is the causative agent of primary and recurrent antibiotic-associated diarrhea and colitis in hospitalized patients. The disease is caused mainly by two exotoxins, TcdA and TcdB, produced by the bacteria. Recurrent C. difficile infection (CDI) constitutes one of the most significant clinical issues of this disease, occurs in more than 20% of patients after the first episode, and may be increasing in frequency. However, there is no well-established animal model of CDI relapse currently available for studying disease pathogenesis, prevention, and therapy. Here we report the establishment of a conventional mouse model of recurrence/relapse CDI. We found that the primary episode of CDI induced little or no protective antibody response against C. difficile toxins and mice continued shedding C. difficile spores. Antibiotic treatment of surviving mice induced a second episode of diarrhea, while a simultaneous reexposure of animals to C. difficile bacteria or spores elicited a full spectrum of CDI similar to that of the primary infection. Moreover, mice treated with immunosuppressive agents were prone to more severe and fulminant recurrent disease. Finally, utilizing this model, we demonstrated that vancomycin only delayed disease recurrence, whereas neutralizing polysera against both TcdA and TcdB completely protected mice against CDI relapse. In conclusion, we have established a mouse relapse CDI model that allows for future investigations of the role of the host immune response in the diseases pathogenesis and permits critical testing of new therapeutics targeting recurrent disease.


Infection and Immunity | 2012

A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection.

Haiying Wang; Xingmin Sun; Yongrong Zhang; Shan Li; Kevin Chen; Lianfa Shi; Weijia Nie; Raj Kumar; Saul Tzipori; Jufang Wang; Tor C. Savidge; Hanping Feng

ABSTRACT The global emergence of Clostridium difficile infection (CDI) has contributed to the recent surge in severe antibiotic-associated diarrhea and colonic inflammation. C. difficile produces two homologous glucosylating exotoxins, TcdA and TcdB, both of which are pathogenic and require neutralization to prevent disease occurrence. However, because of their large size and complex multifunctional domain structures, it has been a challenge to produce native recombinant toxins that may serve as vaccine candidates. Here, we describe a novel chimeric toxin vaccine that retains major neutralizing epitopes from both toxins and confers complete protection against primary and recurrent CDI in mice. Using a nonpathogenic Bacillus megaterium expression system, we generated glucosyltransferase-deficient holotoxins and demonstrated their loss of toxicity. The atoxic holotoxins induced potent antitoxin neutralizing antibodies showing little cross-immunogenicity or protection between TcdA and TcdB. To facilitate simultaneous protection against both toxins, we generated an active clostridial toxin chimera by switching the receptor binding domain of TcdB with that of TcdA. The toxin chimera was fully cytotoxic and showed potent proinflammatory activities. This toxicity was essentially abolished in a glucosyltransferase-deficient toxin chimera, cTxAB. Parenteral immunization of mice or hamsters with cTxAB induced rapid and potent neutralizing antibodies against both toxins. Complete and long-lasting disease protection was conferred by cTxAB vaccinations against both laboratory and hypervirulent C. difficile strains. Finally, prophylactic cTxAB vaccination prevented spore-induced disease relapse, which constitutes one of the most significant clinical issues in CDI. Thus, the rational design of recombinant chimeric toxins provides a novel approach for protecting individuals at high risk of developing CDI.


The Journal of Infectious Diseases | 2012

Systemic Dissemination of Clostridium difficile Toxins A and B Is Associated With Severe, Fatal Disease in Animal Models

Jennifer A. Steele; Kevin Chen; Xingmin Sun; Yongrong Zhang; Haiying Wang; Saul Tzipori; Hanping Feng

BACKGROUNDnClostridium difficile infection (CDI) can cause a wide range of disease, from mild diarrhea to fulminant systemic disease. The incidence of systemic CDI with fatal consequence has increased rapidly in recent years.nnnMETHODSnUsing an ultrasensitive cytotoxicity assay, we measured C. difficile toxin A (TcdA) and C. difficile toxin B (TcdB) in sera and body fluids of piglets and mice exposed to C. difficile to investigate the relationship between the presence of toxins in body fluids and systemic manifestations of CDI.nnnRESULTSnWe found that both TcdA and TcdB disseminate systemically, with toxins present in the sera and body fluids of infected animals, and toxemia is significantly correlated with the development of systemic CDI. The systemic administration of neutralizing antibodies against both toxins blocked the development of systemic disease in mice. We measured cytokine concentrations in the sera of mice and piglets with systemic and nonsystemic CDI and found that proinflammatory mediators were considerably elevated in animals with systemic CDI.nnnCONCLUSIONnOur study demonstrates the existence of a strong correlation between toxemia and the occurrence of systemic disease, supporting the hypothesis that systemic CDI is most likely due to the toxicity of TcdA and TcdB and the induction of proinflammatory cytokines by the toxins.


Immunology Letters | 2015

Reactive oxygen species involved in CT26 immunogenic cell death induced by Clostridium difficile toxin B

Chunli Sun; Haiying Wang; Shuang Mao; Ji Liu; Shan Li; Jufang Wang

Immunogenic cell death (ICD) is a new concept appeared in recent years. Despite growing interests of research on ICD, the circumstances that trigger immune responses against dying tumor cells remain largely unknown. It was demonstrated that recombinant Clostridium difficile toxin B (rTcdB) can induce ICD in intoxicated cells, but its mechanism remains unclear. This work aims at exploring whether reactive oxygen species (ROS) involved in rTcdB induced ICD using the chemical agent N-acetyl cysteine (NAC), diphenylene iodonium (DPI) and Antimycin A (Anti.A). The results suggested that ROS involved in rTcdB induced apoptosis and autophagy. DPI and Anti.A successfully inhibited the antitumor immune effect induced by rTcdB. As ICD is determined by a variety of factors, rTcdB is a potential tool for further exploring the circumstances that trigger ICD, which may offer us a good choice for designing the new chemotherapeutic drugs with immunogenic properties.


Acta Biochimica et Biophysica Sinica | 2014

Recombinant Clostridium difficile toxin B induces endoplasmic reticulum stress in mouse colonal carcinoma cells

Chunli Sun; Haiying Wang; Shuyi Chen; Zhendong Li; Shan Li; Jufang Wang

Clostridium difficile is the main cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans and animals. Its pathogenicity is primarily linked to the secretion of two exotoxins (TcdA and TcdB). Although great progress in the toxic mechanism of TcdA and TcdB has been achieved, there are many conflicting reports about the apoptotic mechanism. More importantly, apoptotic endoplasmic reticulum (ER) stress has been reported in cells treated with Shiga toxins-another kind of cytotoxins that can cause diarrhea and colitis. Herein we checked whether TcdB can induce ER stress. The results showed that recombinant TcdB (rTcdB) activated molecular markers of unfolded protein response, suggesting that rTcdB induced ER stress in CT26 cells. However, rTcdB did not induce the up-regulation of C/EBP homologous protein (CHOP), a classic mediator of apoptotic ER stress, but it activated the precursor of cysteine aspartic acid-specific protease 12 (caspase-12), a controversial mediator of apoptotic ER stress. Besides, glucosyltransferase activity-deficient mutant recombinant TcdB induced ER stress, though it has no cytotoxic or cytopathic effect on CT26 cells. Altogether, these data demonstrated that ER stress induced by rTcdB is glucosyltransferase-independent, indicating that ER stress induced by rTcdB is non-apoptotic. This work also offers us a new insight into the molecular mechanism of CHOP protein expression regulation and the role of CHOP expression in ER stress.


PLOS ONE | 2014

Utility of Clostridium difficile Toxin B for Inducing Anti-Tumor Immunity

Tuxiong Huang; Shan Li; Guangchao Li; Yuan Tian; Haiying Wang; Lianfa Shi; Gregorio Perez-Cordon; Li Mao; Xiaoning Wang; Jufang Wang; Hanping Feng

Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.


Infection | 2017

Rapid detection of Clostridium difficile toxins and laboratory diagnosis of Clostridium difficile infections

Shuyi Chen; Huawei Gu; Chunli Sun; Haiying Wang; Jufang Wang

BackgroundClostridium difficile is an anaerobic, spore-forming and Gram-positive bacillus. It is the major cause of antibiotic-associated diarrhea prevailing in hospital settings. The morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Because of the poor clinical different between CDI and other causes of hospital-acquired diarrhea, laboratory test for C. difficile is an important intervention for diagnosis of CDI.ObjectiveLaboratory tests for CDI can broadly detect either the organisms or its toxins. Currently, several laboratory tests are used for diagnosis of CDI, including toxigenic culture, glutamate dehydrogenase detection, nucleic acid amplification testing, cell cytotoxicity assay, and enzyme immunoassay towards toxin A and/or B. This review focuses on the rapid testing of C. difficile toxins and currently available methods for diagnosis of CDI, giving an overview of the role that the toxins rapid detecting plays in clinical diagnosis of CDI.


Frontiers in Cellular and Infection Microbiology | 2018

Novel Cysteine Desulfidase CdsB Involved in Releasing Cysteine Repression of Toxin Synthesis in Clostridium difficile

Huawei Gu; Yingyin Yang; Meng Wang; Shuyi Chen; Haiying Wang; Shan Li; Yi Ma; Jufang Wang

Clostridium difficile, a major cause of nosocomial diarrhea and pseudomembranous colitis, still poses serious health-care challenges. The expression of its two main virulence factors, TcdA and TcdB, is reportedly repressed by cysteine, but molecular mechanism remains unclear. The cysteine desulfidase CdsB affects the virulence and infection progresses of some bacteria. The C. difficile strain 630 genome encodes a homolog of CdsB, and in the present study, we analyzed its role in C. difficile 630Δerm by constructing an isogenic ClosTron-based cdsB mutant. When C. difficile was cultured in TY broth supplemented with cysteine, the cdsB gene was rapidly induced during the exponential growth phase. The inactivation of cdsB not only affected the resistance of C. difficile to cysteine, but also altered the expression levels of intracellular cysteine-degrading enzymes and the production of hydrogen sulfide. This suggests that C. difficile CdsB is a major inducible cysteine-degrading enzyme. The inactivation of the cdsB gene in C. difficile also removed the cysteine-dependent repression of toxin production, but failed to remove the Na2S-dependent repression, which supports that the cysteine-dependent repression of toxin production is probably attributable to the accumulation of cysteine by-products. We also mapped a δ54 (SigL)-dependent promoter upstream from the cdsB gene, and cdsB expression was not induced in response to cysteine in the cdsR::ermB or sigL::ermB strain. Using a reporter gene fusion analysis, we identified the necessary promoter sequence for cysteine-dependent cdsB expression. Taken together, these results indicate that CdsB is a key inducible cysteine desulfidase in C. difficile which is regulated by δ54 and CdsR in response to cysteine and that cysteine-dependent regulation of toxin production is closely associated with cysteine degradation.


Microbiological Research | 2018

Time-resolved transcriptome analysis of Clostridium difficile R20291 response to cysteine

Huawei Gu; Kan Shi; Zhengping Liao; Haonan Qi; Shuyi Chen; Haiying Wang; Shan Li; Yi Ma; Jufang Wang

The incidence of Clostridium difficile infection has been steadily rising over the past decade. The increase in the rate of incidence is associated with the specific NAP1/BI/027 strains which are hypervirulent and have led to several large outbreaks since their emergence. However, the relation between these outbreaks and virulence regulation mechanisms remains unclear. It has been reported that the major virulence factor TcdA and TcdB in C. difficile could be repressed by cysteine. Here, we investigated the functional and virulence-associated regulation of C. difficile R20291 response to cysteine by using a time-resolved genome-wide transcriptome analysis. Dramatic changes of gene expression in C. difficile revealed functional processes related to transport, metabolism, and regulators in the presence of cysteine during different phases of growth. Flagellar and ribosomal genes were significantly down-regulated in long-term response to cysteine. Many NAP1/BI/027- specific genes were also modulated by cysteine. In addition, cdsB inactivation in C. difficile R20291 could remove the repression of toxin synthesis but could not remove the repression of butyrate production in the presence of cysteine. This suggests that toxin synthesis and butyrate production might have different regulatory controls in response to cysteine. Altogether, our research provides important insights into the regulatory mechanisms of C. difficile response to cysteine.


Microbial Pathogenesis | 2018

Carbon storage regulator CsrA plays important roles in multiple virulence-associated processes of Clostridium difficile

Huawei Gu; Haonan Qi; Shuyi Chen; Kan Shi; Haiying Wang; Jufang Wang

The carbon storage regulator CsrA is a global regulator that controls multiple virulence-associated processes including host cell invasion, virulence secretion, quorum sensing, biofilm formation, and motility in many pathogenic bacteria. However, the roles of CsrA in Clostridium difficile still remain unclear. In this study, a C. difficile strain overexpressing csrA was constructed to investigate its effects on multiple virulence associated processes. Overexpression of csrA resulted in flagella defect and poor motility in C. difficile 630Δerm, suggesting that CsrA involves in the regulation of flagellum synthesis. The levels of toxin production were increased in the C. difficile 630Δerm overexpressing of csrA. Moreover, csrA overexpression enhanced the adherence ability to Caco-2u202fcells and solvent production of C. difficile 630Δerm. Altogether, CsrA of C. difficile participates in multiple virulence processes including toxin production, motility, and adherence, and in the regulation of carbon metabolism. These results enhance our understanding of the regulatory functions of CsrA and reveal that CsrA is an important regulator in C. difficile contributing to virulence regulation.

Collaboration


Dive into the Haiying Wang's collaboration.

Top Co-Authors

Avatar

Jufang Wang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuyi Chen

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Huawei Gu

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shan Li

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunli Sun

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin Chen

University of Maryland

View shared research outputs
Researchain Logo
Decentralizing Knowledge