Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haiyong Ao is active.

Publication


Featured researches published by Haiyong Ao.


Journal of Biomedical Materials Research Part A | 2014

Improved hMSC functions on titanium coatings by type I collagen immobilization

Haiyong Ao; Youtao Xie; Honglue Tan; Xiaodong Wu; Guangwang Liu; An Qin; Xuebin Zheng; Tingting Tang

In this study, type I collagen was fixed onto plasma-sprayed porous titanium coatings by either adsorptive immobilization or covalent immobilization. Surface characterization by scanning electron microscopy (SEM), diffuse reflectance Fourier transform infrared spectroscopy (DR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the biochemical modification of the titanium coatings. The immobilizing effects of type I collagen, including variations in the amount and stability of collagen, were investigated using Sirius red staining. A greater amount of collagen was found on the covalently immobilized titanium coating, and higher stability was achieved relative to the absorptive immobilization surface. Human mesenchymal stem cells (hMSCs) were used to evaluate the cytocompatibility of the modified titanium coatings. Type I collagen immobilized on titanium coating led to enhance cell-material interactions and improved hMSC functions, such as attachment, proliferation, and differentiation. Interestingly, covalently immobilized collagen on titanium coating showed a greater capability to regulate the osteogenic activity of hMSCs than did absorbed collagen, which was explained in terms of the increased amount and higher stability of the covalently linked collagen. The type I collagen covalently immobilized titanium coatings with improved biological function may exhibit better osteointegration in clinical application.


Colloids and Surfaces B: Biointerfaces | 2014

Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration.

Shengbing Yang; Jing Wang; Liangji Tang; Haiyong Ao; Honglue Tan; Tingting Tang; Changsheng Liu

Scaffolds play a critical role in bone tissue engineering. Composite scaffolds made of biodegradable polymers and bioactive inorganic compounds have demonstrated superior properties in bone defect repair. In this study, highly bioactive, resorbable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)-based scaffolds were prepared using combinational 3-dimensional (3D) printing and surface-doping protocol. Structural and morphological characterization of the composite scaffolds demonstrated the homogenous surface-coating of mesoporous bioactive glass (MBG) throughout their porous framework. These hierarchical scaffolds showed bioactivity superior to that of scaffolds made of pure PHBHHx. MBG coating appeared to provide a better environment for human mesenchymal stem cells (hMSCs) attachment, activity, and osteogenic differentiation. Our study indicates that MBG-coated PHBHHx (PHBM) scaffolds may be excellent candidates for use in bone tissue engineering.


Journal of the Royal Society Interface | 2013

Fabrication and in vitro evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings.

Haiyong Ao; Youtao Xie; Honglue Tan; Shengbing Yang; Kai Li; Xiaodong Wu; Xuebin Zheng; Tingting Tang

Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants.


Materials Science and Engineering: C | 2014

Enhanced cellular responses to titanium coating with hierarchical hybrid structure.

Youtao Xie; Haiyong Ao; Shigang Xin; Xuebin Zheng; Chuanxian Ding

In this work, nano/micro hierarchical hybrid structured surface was prepared by fabricating a titania nanotube layer in plasma sprayed porous titanium coating (TC). In vitro human marrow stem cells (hMSCs) were employed for the evaluation of the biological properties of the anodized titanium coating with a hierarchical structure (HSTC). Significantly higher cell adhesion quantity (about 30% more) was found on the HSTC than that on the as-sprayed TC. The expressions of osteocalcin (OC) and osteopontin (OPN) for the HSTC were also detected to be about twice as high as those on the as-sprayed TC. The enhanced cell responses on the HSTC were explained by the improved protein adhesion resulted from the increased surface area and surface energy. Combining the advantages in the mechanical fixation and long-term stability of the plasma sprayed porous TC, the HSTC with a hierarchical structure may be a good candidate for hard tissue replacements, especially for load-bearing implants.


Antimicrobial Agents and Chemotherapy | 2014

In Vivo Effect of Quaternized Chitosan-Loaded Polymethylmethacrylate Bone Cement on Methicillin-Resistant Staphylococcus epidermidis Infection of the Tibial Metaphysis in a Rabbit Model

Honglue Tan; Haiyong Ao; Rui Ma; Wentao Lin; Tingting Tang

ABSTRACT Infection of open tibial fractures with contamination remains a challenge for orthopedic surgeons. Local use of antibiotic-impregnated polymethylmethacrylate (PMMA) beads and blocks is a widely used procedure to reduce the risk of infection. However, the development of antibiotic-resistant organisms make the management of infection more difficult. Our in vitro study demonstrated that quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan [HACC])-loaded PMMA bone cement exhibits strong antibacterial activity toward antibiotic-resistant bacteria. Therefore, the present study aimed to investigate the in vivo antibacterial activity of quaternized chitosan-loaded PMMA. Twenty-four adult female New Zealand White rabbits were used in this study. The right proximal tibial metaphyseal cavity was prepared, 107 CFU of methicillin-resistant Staphylococcus epidermidis was inoculated, and PMMA-only, gentamicin-loaded PMMA (PMMA-G), chitosan-loaded PMMA (PMMA-C), or HACC-loaded PMMA (PMMA-H) bone cement cylinders were inserted. During the follow-up period, the infections were evaluated using X rays on days 21 and 42 and histopathological and microbiological analyses on day 42 after surgery. Radiographic indications of bone infections, including bone lysis, periosteal reactions, cyst formation, and sequestral bone formation, were evident in the PMMA, PMMA-G, and PMMA-C groups but not in the PMMA-H group. The radiographic scores and gross bone pathological and histopathological scores were significantly lower in the PMMA-H group than in the PMMA, PMMA-G, and PMMA-C groups (P < 0.05). Explant cultures also indicated significantly less bacterial growth in the PMMA-H group than in the PMMA, PMMA-G, and PMMA-C groups (P < 0.01). We concluded that PMMA-H bone cement can inhibit the development of bone infections in this animal model inoculated with antibiotic-resistant bacteria, thereby demonstrating its potential application for treatment of local infections in open fractures.


Acta Biomaterialia | 2016

Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan

Ying Yang; Shengbing Yang; Yugang Wang; Zhifeng Yu; Haiyong Ao; Hongbo Zhang; Ling Qin; Olivier Guillaume; David Eglin; R. Geoff Richards; Tingting Tang

Contaminated or infected bone defects remain serious challenges in clinical trauma and orthopaedics, and a bone substitute with both osteoconductivity and antibacterial properties represents an improvement for treatment strategy. In this study, quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) was grafted to 3D-printed scaffolds composed of polylactide-co-glycolide (PLGA) and hydroxyapatite (HA), in order to design bone engineering scaffolds endowed with antibacterial and osteoconductive properties. We found that both the PLGA/HA/HACC and PLGA/HACC composite scaffolds decreased bacterial adhesion and biofilm formation under in vitro and in vivo conditions. Additionally, ATP leakage assay indicated that immobilizing HACC on the scaffolds could effectively disrupt microbial membranes. Using human bone marrow-derived mesenchymal stem cells (hBMSCs), we demonstrated that HA incorporated scaffolds, including PLGA/HA and PLGA/HA/HACC, favoured cell attachment, proliferation, spreading and osteogenic differentiation compared to HA-free PLGA or PLGA/HACC scaffolds. Finally, an in vivo biocompatibility assay conducted on rats, showed that HA incorporated scaffolds (including PLGA/HA and PLGA/HA/HACC scaffolds) exhibited good neovascularization and tissue integration. Taken together, our findings support the approach for developing porous PLGA/HA/HACC composite scaffold with potential clinical application in the treatment of infected bone. STATEMENT OF SIGNIFICANCE Although plenty of conductive scaffold biomaterials have been exploited to improve bone regeneration under infection, potential tissue toxicity under high concentration and antibiotic-resistance are their main deficiencies. This study indicated that HACC-grafted PLGA/HA composite scaffold prepared using an innovative 3D-printing technique and covalent grafting strategy showed significantly enhanced antibacterial activities, especially against the antibiotic-resistant strains, together with good osteogenic activity and biocompatibility. Therefore, it provides an effective porous composite scaffold to combat the infected bone defect in clinic with decreased risks of bacterial resistance and open a feasible strategy for the modification of scaffold interfaces involved in the bone regeneration and anti-infection.


Bone research | 2016

Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes.

Ying Yang; Haiyong Ao; Yugang Wang; Wentao Lin; Shengbing Yang; Shuhong Zhang; Zhifeng Yu; Tingting Tang

Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC), could effectively inhibit bacterial adherence and biofilm formation in vitro. Therefore, the aim of this study was to further investigate the in vitro cytocompatibility with osteogenic cells and the in vivo anti-infection activity of titanium implants with HACC-loaded nanotubes (NT-H). The titanium implant (Ti), nanotubes without polymer loading (NT), and nanotubes loaded with chitosan (NT-C) were fabricated and served as controls. Firstly, we evaluated the cytocompatibility of these specimens with human bone marrow-derived mesenchymal stem cells in vitro. The observation of cell attachment, proliferation, spreading, and viability in vitro showed that NT-H has improved osteogenic activity compared with Ti and NT-C. A prophylaxis rat model with implantation in the femoral medullary cavity and inoculation with methicillin-resistant Staphylococcus aureus was established and evaluated by radiographical, microbiological, and histopathological assessments. Our in vivo study demonstrated that NT-H coatings exhibited significant anti-infection capability compared with the Ti and NT-C groups. In conclusion, HACC-loaded nanotubes fabricated on a titanium substrate show good compatibility with osteogenic cells and enhanced anti-infection ability in vivo, providing a good foundation for clinical application to combat orthopedic implant-associated infections.


RSC Advances | 2016

Covalent immobilization of KR-12 peptide onto a titanium surface for decreasing infection and promoting osteogenic differentiation

Bin'en Nie; Haiyong Ao; Chi Chen; Kai Xie; Jianliang Zhou; Teng Long; Tingting Tang; Bing Yue

Infection and poor bone-implant integration are the two main reasons for titanium (Ti) implant failure. Here, we investigated the feasibility of functionalizing Ti with the antimicrobial peptide, KR-12, derived from the human cationic antimicrobial peptide. The minimal inhibitory concentration and cell viability effects of KR-12 were investigated prior to immobilization on the Ti surface. The results showed that KR-12 possessed a wide anti-bacterial spectrum with no cytotoxicity to human bone marrow mesenchymal stem cells (hBMSCs). Successful covalent immobilization of KR-12 onto an amine-functionalized Ti (Ti-KR-12) surface was characterized by X-ray photoelectron spectroscopy. Gram-positive bacteria, Staphylococcus epidermidis and methicillin resistant Staphylococcus epidermidis were employed for antibacterial characterization. Ti-KR-12 substrates could significantly inhibit adhesion and colonization of common pathogenic bacteria and the drug resistance of pathogenic bacteria. The results of the CCK-8 assay, confocal laser scanning microscopy, and scanning electron microscopy showed that KR-12 covalently immobilized on Ti improved adhesion and proliferation of hBMSCs. The osteogenic differentiation of hBMSCs on samples was investigated by alkaline phosphatase staining, sirius red staining, alizarin red staining, and real-time PCR. The staining and real-time PCR results demonstrated that hBMSCs grown on Ti-KR-12 surfaces for 10 and 14 days under conditions inducing osteogenic differentiation displayed significantly higher alkaline phosphatase activity, larger extracellular matrix calcium deposition area, and higher expression of alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 mRNA than bare Ti. Our results demonstrated the KR-12 peptide was suitable for improving the biological properties of bioinert titanium. KR-12 showed antibacterial activity and the capability to promote cell proliferation and Ti-KR-12 surfaces significantly decreased bacteria adhesion, whilst promoting the osteogenic differentiation of hBMSCs.


Materials | 2016

Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters

Wentao Lin; Yi-yuan Zhang; Honglue Tan; Haiyong Ao; Zhao-ling Duan; Guo He; Tingting Tang

Titania nanotube-based local drug delivery is an attractive strategy for combating implant-associated infection. In our previous study, we demonstrated that the gentamicin-loaded nanotubes could dramatically inhibit bacterial adhesion and biofilm formation on implant surfaces. Considering the overuse of antibiotics may lead to the evolution of antibiotic-resistant bacteria, we synthesized a new quaternized chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) with a 27% degree of substitution (DS; referred to as 27% HACC) that had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. Titania nanotubes with various diameters (80, 120, 160, and 200 nm) and 200 nm length were loaded with 2 mg of HACC using a lyophilization method and vacuum drying. Two standard strain, methicillin-resistant Staphylococcus aureus (American Type Culture Collection 43300) and Staphylococcus epidermidis (American Type Culture Collection 35984), and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the bacterial adhesion at 6 h and biofilm formation at 24, 48, and 72 h on the HACC-loaded nanotubes (NT-H) using the spread plate method, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM). Smooth titanium (Smooth Ti) was also investigated and compared. We found that NT-H could significantly inhibit bacterial adhesion and biofilm formation on its surface compared with Smooth Ti, and the NT-H with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended HACC release time of NT-H with larger diameters. Therefore, NT-H can significantly improve the antibacterial ability of orthopedic implants and provide a promising strategy to prevent implant-associated infections.


International Journal of Nanomedicine | 2016

In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants

Ying Yang; Haiyong Ao; Shengbing Yang; Yugang Wang; Wentao Lin; Zhifeng Yu; Tingting Tang

Titanium-based implants have been widely used in orthopedic surgery; however, failures still occur. Our in vitro study has demonstrated that gentamicin-loaded, 80 nm-diameter nanotubes possessed both antibacterial and osteogenic activities. Thus, the aim of this study was to further investigate the in vivo anti-infection effect of the titanium implants with gentamicin-loaded nanotubes. Thirty-six male Sprague Dawley rats were used to establish an implant-associated infection model. A volume of 50 μL Staphylococcus aureus suspension (1×105 CFU/mL) was injected into the medullary cavity of the left femur, and then the titanium rods without modification (Ti), titanium nanotubes without drug loading (NT), and gentamicin-loaded titanium nanotubes (NT-G) were inserted with phosphate-buffered saline-inoculated Ti rods as a blank control. X-ray images were obtained 1 day, 21 days, and 42 days after surgery; micro-computed tomography, microbiological, and histopathological analyses were used to evaluate the infections at the time of sacrifice. Radiographic signs of bone infection, including osteolysis, periosteal reaction, osteosclerosis, and damaged articular surfaces, were demonstrated in the infected Ti group and were slightly alleviated in the NT group but not observed in the NT-G group. Meanwhile, the radiographic and gross bone pathological scores of the NT-G group were significantly lower than those of the infected Ti group (P<0.01). Explant cultures revealed significantly less bacterial growth in the NT-G group than in the Ti and NT groups (P<0.01), and the NT group showed decreased live bacterial growth compared with the Ti group (P<0.01). Confocal laser scanning microscopy, scanning electron microscopy, and histopathological observations further confirmed decreased bacterial burden in the NT-G group compared with the Ti and NT groups. We concluded that the NT-G coatings can significantly prevent the development of implant-associated infections in a rat model; therefore, they may provide an effective drug-loading strategy to combat implant-associated infections in clinic.

Collaboration


Dive into the Haiyong Ao's collaboration.

Top Co-Authors

Avatar

Tingting Tang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Shengbing Yang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xuebin Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Youtao Xie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Honglue Tan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Wu

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Bin'en Nie

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Bing Yue

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wentao Lin

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ying Yang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge