Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haiyong Han is active.

Publication


Featured researches published by Haiyong Han.


Trends in Pharmacological Sciences | 2000

G-quadruplex DNA: a potential target for anti-cancer drug design

Haiyong Han; Laurence H. Hurley

In addition to the familiar duplex DNA, certain DNA sequences can fold into secondary structures that are four-stranded; because they are made up of guanine (G) bases, such structures are called G-quadruplexes. Considerable circumstantial evidence suggests that these structures can exist in vivo in specific regions of the genome including the telomeric ends of chromosomes and oncogene regulatory regions. Recent studies have demonstrated that small molecules can facilitate the formation of, and stabilize, G-quadruplexes. The possible role of G-quadruplex-interactive compounds as pharmacologically important molecules is explored in this article.


Pharmacology & Therapeutics | 2000

G-quadruplexes as targets for drug design

Laurence H. Hurley; Richard T. Wheelhouse; Daekyu Sun; Sean M. Kerwin; Miguel Salazar; Oleg Yu. Fedoroff; Frank Xiaoguang Han; Haiyong Han; Elzbieta Izbicka; Daniel D. Von Hoff

G-quadruplexes are a family of secondary DNA structures formed in the presence of monovalent cations that consist of four-stranded structures in which Hoogsteen base-pairing stabilizes G-tetrad structures. These structures are proposed to exist in vivo, although direct confirmatory evidence is lacking. Guanine-rich regions of DNA capable of forming G-quadruplex structures are found in a variety of chromosomal regions, including telomeres and promoter regions of DNA. In this review, we describe the design of three separate groups of G-quadruplex-interactive compounds and their interaction with G-quadruplex DNA. Using the first group of compounds (anthraquinones), we describe experiments that provide the proof of concept that a G-quadruplex is required for inhibition of telomerase. Using the second group of compounds (perylenes), we describe the structure of a G-quadruplex-ligand complex and its effect on the dynamics of formation and enzymatic unwinding of the quadruplex. For the third group of compounds (porphyrins), we describe the experiments that relate the biological effects to their interactions with G-quadruplexes.


Nature Reviews Cancer | 2011

Perineural invasion and associated pain in pancreatic cancer

Aditi A. Bapat; Galen Hostetter; Daniel D. Von Hoff; Haiyong Han

Perineural invasion (PNI) is a prominent characteristic of pancreatic cancer. PNI is a process whereby cancer cells invade the surrounding nerves, thus providing an alternative route for metastatic spread and pain generation. PNI is thought to be an indicator of aggressive tumour behaviour and has been shown to correlate with poor prognosis of patients with pancreatic cancer. Recent studies demonstrated that some signalling molecules and pathways that are involved in PNI are also involved in pain generation. Targeting these signalling pathways has shown some promise in alleviating pain and reducing PNI, which could potentially improve treatment outcomes for patients with pancreatic cancer.


Molecular Cancer Therapeutics | 2005

PRL phosphatases as potential molecular targets in cancer

Bret Stephens; Haiyong Han; Vijay Gokhale; Daniel D. Von Hoff

The phosphatase of regenerating liver (PRL) family of phosphatases, consisting of PRL-1, PRL-2, and PRL-3, represents an intriguing group of proteins being validated as biomarkers and therapeutic targets in cancer. Individual PRLs are overexpressed in a variety of cancer cell lines and tissues when compared with their normal counterparts. More importantly, several recent studies have shown that PRL-3 is expressed at higher levels and at a greater frequency in colorectal cancer metastases compared with primary colorectal tumors and normal colon tissue. Ectopic expression of PRLs in nontumorigenic cells can influence proliferation and the migratory and invasive properties of cells, while knockdown of endogenous PRL-3 or PRL-1 in cancerous cells using small interfering RNA can abrogate cell motility and ability to metastasize in a mouse model. However, the exact biological function and cellular substrates of the PRLs remain unclear. This review will discuss what is known about the PRLs, what makes the PRLs possible attractive targets for therapeutic intervention, and the possible future directions in PRL biology and inhibitor identification.


PLOS Genetics | 2014

Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.

Mitesh J. Borad; Mia D. Champion; Jan B. Egan; Winnie S. Liang; Rafael Fonseca; Alan H. Bryce; Ann E. McCullough; Michael T. Barrett; Katherine S. Hunt; Maitray D. Patel; Scott W. Young; Joseph M. Collins; Alvin C. Silva; Rachel M. Condjella; Matthew S. Block; Robert R. McWilliams; Konstantinos N. Lazaridis; Eric W. Klee; Keith C. Bible; Pamela Jo Harris; Gavin R. Oliver; Jaysheel D. Bhavsar; Asha Nair; Sumit Middha; Yan W. Asmann; Jean Pierre A Kocher; Kimberly A. Schahl; Benjamin R. Kipp; Emily G. Barr Fritcher; Angela Baker

Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.


Cancer Biology & Therapy | 2008

Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification

Shuaili Chen; Theresa Auletta; Ostap Dovirak; Christina Hutter; Karen Kuntz; Samyra El-ftesi; Jude Kendall; Haiyong Han; Daniel D. Von Hoff; Raheela Ashfaq; Anirban Maitra; Christine A. Iacobuzio-Donahue; Ralph H. Hruban; Robert Lucito

Pancreatic cancer is one of the most lethal of all cancers. The median survival is 6 months, and less than 5% of those diagnosed survive 5-years. Recurrent genetic deletions and amplifications in 73 pancreatic adenocarcinomas, the largest sample set analyzed to date for pancreatic cancer, were defined using comparative genomic hybridization The recurrent genetic alterations identified target a number of previously well-characterized genes, as well as regions that contain possible new oncogenes and tumor suppressor genes. We have focused on chromosome 19q13, a region frequently found amplified in pancreatic cancer, and demonstrate how boundaries of common regions of mutation can be mapped, and how a gene, in this case PAK4 amplified on chromosome19q13, can be functionally validated. We show that although the PAK4 gene is not activated by mutation in cell lines with gene amplification, an oncogenic form of the KRAS2 gene is present in these cells, and oncogenic KRAS2 can activate PAK4. In fact in the three samples we identified with PAK4 gene amplification, the KRAS2 gene was activated and genomically amplified. The kinase activity of the PAK4 protein is significantly higher in cells with genomic amplification as compared to cells without amplification. Our study demonstrates the utility of analyzing copy number data in a large set of neoplasms to identify genes involved in cancer. We have generated a useful dataset which will be particularly useful for the pancreatic cancer community as efforts are undertaken to sequence the pancreatic cancer genome.


Cancer Discovery | 2011

Targeting the Tumor Microenvironment in Cancer: Why Hyaluronidase Deserves a Second Look

Clifford J. Whatcott; Haiyong Han; Richard G. Posner; Galen Hostetter; Daniel D. Von Hoff

Increased extracellular matrix (ECM) deposition is a characteristic observed in many solid tumors. Increased levels of one ECM component-namely, hyaluronan (HA)-leads to reduced elasticity of tumor tissue and increased interstitial fluid pressure. Multiple initial reports showed that the addition of hyaluronidase (HYAL) to chemotherapeutic regimens could greatly improve efficacy. Unfortunately, the bovine HYAL used in those studies was limited therapeutically by immunologic responses to treatment. Newly developed recombinant human HYAL has recently been introduced into clinical trials. In this article, we describe the role of HA in cancer, methods of targeting HA, and clinical studies performed to date, and we propose that targeting HA could now be an effective treatment option for patients with many different types of solid tumors.


Expert Opinion on Therapeutic Targets | 2004

Hitting multiple targets with multimeric ligands.

Heather L. Handl; Josef Vagner; Haiyong Han; Eugene A. Mash; Victor J. Hruby; Robert J. Gillies

Multimeric ligands consist of multiple monomeric ligands attached to a single backbone molecule, creating a multimer that can bind to multiple receptors or targets simultaneously. Numerous examples of multimeric binding exist within nature. Due to the multiple and simultaneous binding events, multimeric ligands bind with an increased affinity compared to their corresponding monomers. Multimeric ligands may provide opportunities in the field of drug discovery by providing enhanced selectivity and affinity of binding interactions, thus providing molecular-based targeted therapies. However, gaps in our knowledge currently exist regarding the quantitative measures for important design characteristics, such as flexibility, length and orientation of the inter-ligand linkers, receptor density and ligand sequence. In this review, multimeric ligand binding in two separate phases is examined. The prerecruitment phase describes the binding of one ligand of a multimer to its corresponding receptor, an event similar to monomeric ligand binding. This results in transient increases in the local concentration of the other ligands, leading to apparent cooperativity. The postrecruitment phase only occurs once all receptors have been aligned and bound by their corresponding ligand. This phase is analogous to DNA–DNA interactions in that the stability of the complex is derived from physical orientation. Multiple factors influence the kinetics and thermodynamics of multimeric binding, and these are discussed.


Molecular Cancer Therapeutics | 2006

Identification of a lead small-molecule inhibitor of the Aurora kinases using a structure-assisted, fragment-based approach

Steven L. Warner; Sridevi Bashyam; Hariprasad Vankayalapati; David J. Bearss; Haiyong Han; Daniel D. Von Hoff; Laurence H. Hurley

Aurora A and Aurora B are potential targets for anticancer drug development due to their roles in tumorigenesis and disease progression. To identify small-molecule inhibitors of the Aurora kinases, we undertook a structure-based design approach that used three-dimensional structural models of the Aurora A kinase and molecular docking simulations of chemical entities. Based on these computational methods, a new generation of inhibitors derived from quinazoline and pyrimidine-based tricyclic scaffolds were synthesized and evaluated for Aurora A kinase inhibitory activity, which led to the identification of 4-(6,7-dimethoxy-9H-1,3,9-triaza-fluoren-4-yl)-piperazine-1-carbothioic acid [4-(pyrimidin-2-ylsulfamoyl)-phenyl]-amide. The lead compound showed selectivity for the Aurora kinases when it was evaluated against a panel of diverse kinases. Additionally, the compound was evaluated in cell-based assays, showing a dose-dependent decrease in phospho-histone H3 levels and an arrest of the cell cycle in the G2-M fraction. Although biological effects were observed only at relatively high concentrations, this chemical series provides an excellent starting point for drug optimization and further development. [Mol Cancer Ther 2006;5(7):1764–72]


Clinical Cancer Research | 2011

Synergistic Effect between Erlotinib and MEK Inhibitors in KRAS Wild-Type Human Pancreatic Cancer Cells

Caroline H. Diep; Ruben M. Munoz; Ashish Choudhary; Daniel D. Von Hoff; Haiyong Han

Purpose: The combination of erlotinib and gemcitabine has shown a small but statistically significant survival advantage when compared with gemcitabine alone in patients with advanced pancreatic cancer. However, the overall survival rate with the erlotinib and gemcitabine combination is still low. In this study, we sought to identify gene targets that, when inhibited, would enhance the activity of epidermal growth factor receptor (EGFR)-targeted therapies in pancreatic cancer cells. Experimental Design: A high-throughput RNA interference (RNAi) screen was carried out to identify candidate genes. Selected gene hits were further confirmed and mechanisms of action were further investigated using various assays. Results: Six gene hits from siRNA screening were confirmed to significantly sensitize BxPC-3 pancreatic cancer cells to erlotinib. One of the hits, mitogen-activated protein kinase (MAPK) 1, was selected for further mechanistic studies. Combination treatments of erlotinib and two MAP kinase kinase (MEK) inhibitors, RDEA119 and AZD6244, showed significant synergistic effect for both combinations (RDEA119–erlotinib and AZD6244–erlotinib) compared with the corresponding single drug treatments in pancreatic cancer cell lines with wild-type KRAS (BxPC-3 and Hs 700T) but not in cell lines with mutant KRAS (MIA PaCa-2 and PANC-1). The enhanced antitumor activity of the combination treatment was further verified in the BxPC-3 and MIA PaCa-2 mouse xenograft model. Examination of the MAPK signaling pathway by Western blotting indicated effective inhibition of the EGFR signaling by the drug combination in KRAS wild-type cells but not in KRAS mutant cells. Conclusions: Overall, our results suggest that combination therapy of an EGFR and MEK inhibitors may have enhanced efficacy in patients with pancreatic cancer. Clin Cancer Res; 17(9); 2744–56. ©2011 AACR.

Collaboration


Dive into the Haiyong Han's collaboration.

Top Co-Authors

Avatar

Daniel D. Von Hoff

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruben M. Munoz

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Clifford J. Whatcott

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline H. Diep

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Aprill Watanabe

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael J. Demeure

Translational Genomics Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge