Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haiyoung Jung is active.

Publication


Featured researches published by Haiyoung Jung.


Oncogene | 2008

TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial–mesenchymal transition

Haiyoung Jung; Kwang Pyo Lee; Seong-Hun Park; Park Jh; Y-s Jang; S-Y Choi; J-G Jung; K Jo; D Y Park; J H Yoon; J-H Park; D-S Lim; G-R Hong; Chang Woon Choi; Y-K Park; Jung Whoi Lee; Hyo Jeong Hong; S-S Kim; Young-Kyu Park

TMPRSS4 is a novel type II transmembrane serine protease found at the cell surface that is highly expressed in pancreatic, colon and gastric cancer tissues. However, the biological functions of TMPRSS4 in cancer are unknown. Here we show, using reverse transcription–PCR, that TMPRSS4 is highly elevated in lung cancer tissues compared with normal tissues and is also broadly expressed in a variety of human cancer cell lines. Knockdown of TMPRSS4 by small interfering RNA treatment in lung and colon cancer cell lines was associated with reduction of cell invasion and cell-matrix adhesion as well as modulation of cell proliferation. Conversely, the invasiveness, motility and adhesiveness of SW480 colon carcinoma cells were significantly enhanced by TMPRSS4 overexpression. Furthermore, overexpression of TMPRSS4 induced loss of E-cadherin-mediated cell–cell adhesion, concomitant with the induction of SIP1/ZEB2, an E-cadherin transcriptional repressor, and led to epithelial–mesenchymal transition events, including morphological changes, actin reorganization and upregulation of mesenchymal markers. TMPRSS4-overexpressing cells also displayed markedly increased metastasis to the liver in nude mice upon intrasplenic injection. Taken together, these studies suggest that TMPRSS4 controls the invasive and metastatic potential of human cancer cells by facilitating an epithelial–mesenchymal transition; TMPRSS4 may be a potential therapeutic target for cancer treatment.


Journal of Biological Chemistry | 2008

Critical Role of Cysteine Residue 81 of Macrophage Migration Inhibitory Factor (MIF) in MIF-induced Inhibition of p53 Activity

Haiyoung Jung; Hyun-A Seong; Hyunjung Ha

Macrophage migration inhibitory factor (MIF) is a potent modulator of the p53 signaling pathway, but the molecular mechanisms of the effect of MIF on p53 function have so far remained unclear. Here we show that MIF physically interacts with the p53 tumor suppressor in vitro and in vivo. This association was significantly reduced by a C81S mutation but not C57S or C60S mutations, suggesting that Cys81 is essential for the in vivo association between MIF and p53. This association also depended on Cys242 (and, to some extent, on Cys238) within the central DNA binding domain of p53. Ectopic expression of MIF, but not MIF(C81S), inhibited p53-mediated transcriptional activation in a dose-dependent manner. Conversely, knockdown of endogenous MIF stimulated p53-mediated transcription. MIF inhibited p53-induced apoptosis and cell cycle arrest, whereas the MIF(C81S) mutant, which is unable to physically associate with p53, had no effect. Consistent with these findings, confocal microscopy showed that MIF prevented p53 translocation from the cytoplasm to the nucleus. We also demonstrated that MIF suppresses p53 activity by stabilizing the physical association between p53 and Mdm2. These results suggest that MIF physically associates with p53 and negatively regulates p53 function.


Journal of Biological Chemistry | 2007

NM23-H1 Tumor Suppressor and Its Interacting Partner STRAP Activate p53 Function *

Haiyoung Jung; Hyun-A Seong; Hyunjung Ha

p53 plays a critical role in a variety of growth inhibitory responses, including cell cycle arrest, differentiation, and apoptosis, and contributes to tumor suppression. Here we show that NM23-H1 and its binding partner STRAP (serine-threonine kinase receptor-associated protein) interact with p53 and potentiate p53 activity. Both NM23-H1 and STRAP directly interact with the central DNA binding domain within residues 113-290. The use of NM23-H1 and STRAP mutants revealed that Cys145 of NM23-H1 and Cys152 (or Cys270) of STRAP were responsible for p53 binding. Furthermore, Cys176 and Cys135 of p53 were required to bind NM23-H1 and STRAP, respectively. Ectopic expression of wild-type NM23-H1 and STRAP, but not NM23-H1(C145S) and STRAP(C152S/C270S), positively regulated p53-mediated transcription in a dose-dependent manner. Knockdown of endogenous NM23-H1 or STRAP produced an opposite trend and inhibited the p53-mediated transcription. Similarly, NM23-H1 and STRAP stimulated p53-induced apoptosis and growth inhibition, whereas the NM23-H1(C145S) and STRAP(C152S/C270S) mutants had no effect. We also demonstrated that p53 activation by NM23-H1 and STRAP was mediated by removing Mdm2, a negative regulator of p53, from the p53-Mdm2 complex. These results suggest that NM23-H1 and its interacting partner STRAP physically interact with p53 and positively regulate its functions, including p53-induced apoptosis and cell cycle arrest.


Journal of Biological Chemistry | 2007

NM23-H1 Tumor Suppressor Physically Interacts with Serine-Threonine Kinase Receptor-associated Protein, a Transforming Growth Factor-β (TGF-β) Receptor-interacting Protein, and Negatively Regulates TGF-β Signaling

Hyun-A Seong; Haiyoung Jung; Hyunjung Ha

NM23-H1 is a member of the NM23/NDP kinase gene family and a putative metastasis suppressor. Previously, a screen for NM23-H1-interacting proteins that could potentially modulate its activity identified serine-threonine kinase receptor-associated protein (STRAP), a transforming growth factor (TGF)-β receptor-interacting protein. Through the use of cysteine to serine amino acid substitution mutants of NM23-H1 (C4S, C109S, and C145S) and STRAP (C152S, C270S, and C152S/C270S), we demonstrated that the association between these two proteins is dependent on Cys145 of NM23-H1 and Cys152 and Cys270 of STRAP but did not appear to involve Cys4 and Cys109 of NM23-H1, suggesting that a disulfide linkage involving Cys145 of NM23-H1 and Cys152 or Cys270 of STRAP mediates complex formation. The interaction was dependent on the presence of dithiothreitol or β-mercaptoethanol but not H2O2. Ectopic expression of wild-type NM23-H1, but not NM23-H1(C145S), negatively regulated TGF-β signaling in a dose-dependent manner, enhanced stable association between the TGF-β receptor and Smad7, and prevented nuclear translocation of Smad3. Similarly, wild-type NM23-H1 inhibited TGF-β-induced apoptosis and growth inhibition, whereas NM23-H1(C145S) had no effect. Knockdown of NM23-H1 by small interfering RNA stimulated TGF-β signaling. Coexpression of wild-type STRAP, but not STRAP(C152S/C270S), significantly stimulated NM23-H1-induced growth of HaCaT cells. These results suggest that the direct interaction of NM23-H1 and STRAP is important for the regulation of TGF-β-dependent biological activity as well as NM23-H1 activity.


Journal of Biological Chemistry | 2005

Regulation of Transforming Growth Factor-β Signaling and PDK1 Kinase Activity by Physical Interaction between PDK1 and Serine-Threonine Kinase Receptor-associated Protein

Hyun-A Seong; Haiyoung Jung; Hueng-Sik Choi; Kyong-Tai Kim; Hyunjung Ha

To gain more insights about the biological roles of PDK1, we have used the yeast two-hybrid system and in vivo binding assay to identify interacting molecules that associate with PDK1. As a result, serine-threonine kinase receptor-associated protein (STRAP), a transforming growth factor-β (TGF-β) receptor-interacting protein, was identified as an interacting partner of PDK1. STRAP was found to form in vivo complexes with PDK1 in intact cells. Mapping analysis revealed that this binding was only mediated by the catalytic domain of PDK1 and not by the pleckstrin homology domain. Insulin enhanced a physical association between PDK1 and STRAP in intact cells, but this insulin-induced association was prevented by wortmannin, a phosphatidylinositol 3-kinase inhibitor. In addition, the association between PDK1 and STRAP was decreased by TGF-β treatment. Analysis of the activities of the interacting proteins showed that PDK1 kinase activity was significantly increased by coexpression of STRAP, probably through the inhibition of the binding of 14-3-3, a negative regulator, to PDK1. Consistently, knockdown of the endogenous STRAP by the transfection of the small interfering RNA resulted in the decrease of PDK1 kinase activity. PDK1 also exhibited an inhibition of TGF-β signaling with STRAP by contributing to the stable association between TGF-β receptor and Smad7. Moreover, confocal microscopic study and immunostaining results demonstrated that PDK1 prevented the nuclear translocation of Smad3 in response to TGF-β. Knockdown of endogenous PDK1 with small interfering RNA has an opposite effect. Taken together, these results suggested that STRAP acts as an intermediate signaling molecule linking between the phosphatidylinositol 3-kinase/PDK1 and the TGF-β signaling pathways.


Journal of Biological Chemistry | 2008

Murine Protein Serine/Threonine Kinase 38 Activates Apoptosis Signal-regulating Kinase 1 via Thr838 Phosphorylation

Haiyoung Jung; Hyun-A Seong; Hyunjung Ha

Murine protein serine/threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family that plays an important role in various cellular processes, including cell cycle, signaling pathways, and self-renewal of stem cells. Here we demonstrate a functional association between MPK38 and apoptosis signal-regulating kinase 1 (ASK1). The physical association between MPK38 and ASK1 was mediated through their carboxyl-terminal regulatory domains and was increased by H2O2 or tumor necrosis factor α treatment. The use of kinase-dead MPK38 and ASK1 mutants revealed that MPK38-ASK1 complex formation was dependent on the activities of both kinases. Ectopic expression of wild-type MPK38, but not kinase-dead MPK38, stimulated ASK1 activity by Thr838 phosphorylation and enhanced ASK1-mediated signaling to both JNK and p38 kinases. However, the phosphorylation of MKK6 and p38 by MPK38 was not detectable. In addition, MPK38-mediated ASK1 activation was induced through the increased interaction between ASK1 and its substrate MKK3. MPK38 also stimulated H2O2-mediated apoptosis by enhancing the ASK1 activity through Thr838 phosphorylation. These results suggest that MPK38 physically interacts with ASK1 in vivo and acts as a positive upstream regulator of ASK1.


Cell Metabolism | 2013

TXNIP Maintains the Hematopoietic Cell Pool by Switching the Function of p53 under Oxidative Stress

Haiyoung Jung; Mi Jeong Kim; Dong Oh Kim; Won Sam Kim; Sung-Jin Yoon; Young-Jun Park; Suk Ran Yoon; Tae-Don Kim; Hyun-Woo Suh; Sohyun Yun; Jeong-Ki Min; Hee Gu Lee; Young Lee; Hee-Jun Na; Dong Chul Lee; Hyoung-Chin Kim; Inpyo Choi

Reactive oxygen species (ROS) are critical determinants of the fate of hematopoietic stem cells (HSCs) and hematopoiesis. Thioredoxin-interacting protein (TXNIP), which is induced by oxidative stress, is a known regulator of intracellular ROS. Txnip(-/-) old mice exhibited elevated ROS levels in hematopoietic cells and showed a reduction in hematopoietic cell population. Loss of TXNIP led to a dramatic reduction of mouse survival under oxidative stress. TXNIP directly regulated p53 protein by interfering with p53- mouse double minute 2 (MDM2) interactions and increasing p53 transcriptional activity. Txnip(-/-) mice showed downregulation of the antioxidant genes induced by p53. Introduction of TXNIP or p53 into Txnip(-/-) bone marrow cells rescued the HSC frequency and greatly increased survival in mice following oxidative stress. Overall, these data indicate that TXNIP is a regulator of p53 and plays a pivotal role in the maintenance of the hematopoietic cells by regulating intracellular ROS during oxidative stress.


Journal of Biological Chemistry | 2008

Direct Interaction between NM23-H1 and Macrophage Migration Inhibitory Factor (MIF) Is Critical for Alleviation of MIF-mediated Suppression of p53 Activity

Haiyoung Jung; Hyun-A Seong; Hyunjung Ha

Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that is involved in host immune and inflammatory responses, as well as tumorigenesis. However, the regulatory mechanism of MIF function is unclear. Here we report that the NM23-H1 interacts with MIF in cells, as demonstrated by cotransfection and coimmunoprecipitation experiments. Analysis of cysteine (Cys) to serine (Ser) substitution mutants of NM23-H1 (C4S, C109S, and C145S) and MIF (C57S, C60S, and C81S) revealed that Cys145 of NM23-H1 and Cys60 of MIF are responsible for complex formation. NM23-H1-MIF complexes were dependent on reducing conditions, such as the presence of dithiothreitol or β-mercaptoethanol, but not H2O2. NM23-H1 alleviated the MIF-mediated suppression of p53-induced apoptosis and cell cycle arrest by promoting the dissociation of MIF from MIF-p53 complexes. In addition, NM23-H1 significantly inhibited the MIF-induced proliferation of quiescent NIH 3T3 cells through a direct interaction with MIF, and decreased the MIF-induced activation of phosphatidylinositol 3-kinase/PDK1 and p44/p42 extracellular signal-regulated (ERK) mitogen-activated protein kinase. The results of the current study suggest that the NM23-H1 functions as a negative regulator of MIF.


Journal of Biological Chemistry | 2007

3-Phosphoinositide-dependent PDK1 Negatively Regulates Transforming Growth Factor-β-induced Signaling in a Kinase-dependent Manner through Physical Interaction with Smad Proteins

Hyun-A Seong; Haiyoung Jung; Kyong-Tai Kim; Hyunjung Ha

We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-β (TGF-β) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-β signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-β treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-β-induced transcription, as well as TGF-β-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-β. Taken together, our results suggest that PDK1 negatively regulates TGF-β-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.


Immunology Letters | 2011

TOX regulates the differentiation of human natural killer cells from hematopoietic stem cells in vitro.

Sohyun Yun; Suk Hyung Lee; Suk-Ran Yoon; Mi Sun Kim; Zheng-Hao Piao; Pyung-Keun Myung; Tae-Don Kim; Haiyoung Jung; Inpyo Choi

Natural killer (NK) cells act important roles in innate immunity and adaptive immunity. However, the mechanisms governing NK cell development have not been clearly elucidated. Previous studies have shown that an HMG (high-mobility group) protein, TOX, is important for regulating the differentiation program of developing T cells in mice. In this study, we examined the role of TOX in differentiation of human NK cells. Knockdown of TOX in differentiating cells decreased the NK cell population identified by expression of NK surface markers and receptors. In addition, over-expression of TOX enhanced the differentiation of NK cells which give rise to a population showing effector functions of mature NK cells. Moreover, TOX influenced expression of T-bet (T-box expressed in T cells, also as known as Tbx21) during NK cell development. Overall, these results suggest that TOX is required for IL-15-mediated NK cell differentiation and affected expression of T-bet that plays critical roles in NK differentiation and maturation.

Collaboration


Dive into the Haiyoung Jung's collaboration.

Top Co-Authors

Avatar

Inpyo Choi

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Suk Ran Yoon

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Tae-Don Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Hyunjung Ha

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Hyun-A Seong

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Young-Jun Park

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Dong Oh Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Mi Jeong Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Hee Gu Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Won Sam Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge