Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haiyun Gan is active.

Publication


Featured researches published by Haiyun Gan.


Genes & Development | 2013

The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression

Kui Ming Chan; Dong Fang; Haiyun Gan; Rintaro Hashizume; Chuanhe Yu; Mark A. Schroeder; Nalin Gupta; Sabine Mueller; C. David James; Robert B. Jenkins; Jann N. Sarkaria; Zhiguo Zhang

Recent studies have identified a Lys 27-to-methionine (K27M) mutation at one allele of H3F3A, one of the two genes encoding histone H3 variant H3.3, in 60% of high-grade pediatric glioma cases. The median survival of this group of patients after diagnosis is ∼1 yr. Here we show that the levels of H3K27 di- and trimethylation (H3K27me2 and H3K27me3) are reduced globally in H3.3K27M patient samples due to the expression of the H3.3K27M mutant allele. Remarkably, we also observed that H3K27me3 and Ezh2 (the catalytic subunit of H3K27 methyltransferase) at chromatin are dramatically increased locally at hundreds of gene loci in H3.3K27M patient cells. Moreover, the gain of H3K27me3 and Ezh2 at gene promoters alters the expression of genes that are associated with various cancer pathways. These results indicate that H3.3K27M mutation reprograms epigenetic landscape and gene expression, which may drive tumorigenesis.


Nature Medicine | 2014

Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma

Rintaro Hashizume; Noemi Andor; Yuichiro Ihara; Robin Lerner; Haiyun Gan; Xiaoyue Chen; Dong Fang; Xi Huang; Maxwell Tom; Vy Ngo; David A. Solomon; Sabine Mueller; Pamela L. Paris; Zhiguo Zhang; Claudia Petritsch; Nalin Gupta; Todd Waldman; C. David James

Pediatric brainstem gliomas often harbor oncogenic K27M mutation of histone H3.3. Here we show that GSKJ4 pharmacologic inhibition of K27 demethylase JMJD3 increases cellular H3K27 methylation in K27M tumor cells and demonstrate potent antitumor activity both in vitro against K27M cells and in vivo against K27M xenografts. Our results demonstrate that increasing H3K27 methylation by inhibiting K27 demethylase is a valid therapeutic strategy for treating K27M-expressing brainstem glioma.


Molecular Cell | 2014

Strand-Specific Analysis Shows Protein Binding at Replication Forks and PCNA Unloading from Lagging Strands when Forks Stall

Chuanhe Yu; Haiyun Gan; Junhong Han; Zhi Xiong Zhou; Shaodong Jia; Andrei Chabes; Gianrico Farrugia; Tamas Ordog; Zhiguo Zhang

In eukaryotic cells, DNA replication proceeds with continuous synthesis of leading-strand DNA and discontinuous synthesis of lagging-strand DNA. Here we describe a method, eSPAN (enrichment and sequencing of protein-associated nascent DNA), which reveals the genome-wide association of proteins with leading and lagging strands of DNA replication forks. Using this approach in budding yeast, we confirm the strand specificities of DNA polymerases delta and epsilon and show that the PCNA clamp is enriched at lagging strands compared with leading-strand replication. Surprisingly, at stalled forks, PCNA is unloaded specifically from lagging strands. PCNA unloading depends on the Elg1-containing alternative RFC complex, ubiquitination of PCNA, and the checkpoint kinases Mec1 and Rad53. Cells deficient in PCNA unloading exhibit increased chromosome breaks. Our studies provide a tool for studying replication-related processes and reveal a mechanism whereby checkpoint kinases regulate strand-specific unloading of PCNA from stalled replication forks to maintain genome stability.


Science | 2016

The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas

Dong Fang; Haiyun Gan; Jeong Heon Lee; Jing Han; Zhiquan Wang; Scott M. Riester; Long Jin; Jianji Chen; Hui Zhou; Jinglong Wang; Honglian Zhang; Na Yang; Elizabeth W. Bradley; Thai H. Ho; Brian P. Rubin; Julia A. Bridge; Stephen N. Thibodeau; Tamas Ordog; Yue Chen; Andre J. van Wijnen; Andre M. Oliveira; Rui-Ming Xu; Jennifer J. Westendorf; Zhiguo Zhang

A cancer-promoting histone protein Mutations in the chromatin protein histone H3 are found in a number of pediatric cancers. The lysine-36–to–methionine (K36M) “oncohistone” mutation is seen in almost all chondroblastomas. Fang et al. show that the K36M mutant histones inhibit the normal methylation of this same residue in wild-type H3 histones. They do so by interfering with the enzymes that normally methylate this residue. The altered chromatin methylation patterns alter the expression of known cancer-related genes and impart cancer-related characteristics to the chondrocyte cells. Science, this issue p. 1344 The lysine-36–to–methionine mutation in histone H3 interferes with inhibitory chromatin marks and promotes cancer. More than 90% of chondroblastomas contain a heterozygous mutation replacing lysine-36 with methionine-36 (K36M) in the histone H3 variant H3.3. Here we show that H3K36 methylation is reduced globally in human chondroblastomas and in chondrocytes harboring the same genetic mutation, due to inhibition of at least two H3K36 methyltransferases, MMSET and SETD2, by the H3.3K36M mutant proteins. Genes with altered expression as well as H3K36 di- and trimethylation in H3.3K36M cells are enriched in cancer pathways. In addition, H3.3K36M chondrocytes exhibit several hallmarks of cancer cells, including increased ability to form colonies, resistance to apoptosis, and defects in differentiation. Thus, H3.3K36M proteins reprogram the H3K36 methylation landscape and contribute to tumorigenesis, in part through altering the expression of cancer-associated genes.


Cell Cycle | 2013

A lesson learned from the H3.3K27M mutation found in pediatric glioma: A new approach to the study of the function of histone modifications in vivo?

Kui Ming Chan; Jing Han; Dong Fang; Haiyun Gan; Zhiguo Zhang

Glioblastoma (GBM) is the most aggressive primary brain tumor in human. Recent studies on high-grade pediatric GBM have identified two recurrent mutations (K27M and G34R/V) in genes encoding histone H3 (H3F3A for H3.3 and HIST1H3B for H3.1).1,2 The two histone H3 mutations are mutually exclusive and give rise to tumors in different brain compartments.3 Recently, we4 and others5 have shown that the histone H3 K27M mutation specifically altered the di- and tri-methylation of endogenous histone H3 at Lys27. Genome-wide studies using ChIP-seq on H3.3K27M patient samples indicate a global reduction of H3K27me3 on chromatin. Remarkably, we also found a dramatic enrichment of H3K27me3 and EZH2 (the catalytic subunit H3K27 methyltransferase) at hundreds of gene loci in H3.3K27M patient cells. Here, we discuss potential mechanisms whereby H3K27me3 is enriched at chromatin loci in cells expressing the H3.3K27M mutation and report effects of Lys-to-Met mutations of other well-studied lysine residues of histone H3.1/H3.3 and H4 on the corresponding endogenous lysine methylation. We suggest that mutation(s) on histones may be found in a variety of human diseases, and the expression of mutant histones may help to address the function of histone lysine methylation and possibly other modifications in mammalian cells.


Molecular Cell | 2017

RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells.

Honglian Zhang; Haiyun Gan; Zhiquan Wang; Jeong Heon Lee; Hui Zhou; Tamas Ordog; Marc S. Wold; Mats Ljungman; Zhiguo Zhang

The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation.


Nucleic Acids Research | 2017

H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication

Rentian Wu; Zhiquan Wang; Honglian Zhang; Haiyun Gan; Zhiguo Zhang

DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex.


Science | 2018

A mechanism for preventing asymmetric histone segregation onto replicating DNA strands

Chuanhe Yu; Haiyun Gan; Albert Serra-Cardona; Lin Zhang; Songlin Gan; Sushma Sharma; Erik Johansson; Andrei Chabes; Rui-Ming Xu; Zhiguo Zhang

How cells ensure symmetric inheritance Parental histones with modifications are recycled to newly replicated DNA strands during genome replication, but do the two sister chromatids inherit modified histones equally? Yu et al. and Petryk et al. found in mouse and yeast, respectively, that modified histones are segregated to both DNA daughter strands in a largely symmetric manner (see the Perspective by Ahmad and Henikoff). However, the mechanisms ensuring this symmetric inheritance in yeast and mouse were different. Yeasts use subunits of DNA polymerase to prevent the lagging-strand bias of parental histones, whereas in mouse cells, the replicative helicase MCM2 counters the leading-strand bias. Science, this issue p. 1386, p. 1389; see also p. 1311 DNA polymerase subunits prevent asymmetric segregation of parental histones during DNA replication in yeast. How parental histone (H3-H4)2 tetramers, the primary carriers of epigenetic modifications, are transferred onto leading and lagging strands of DNA replication forks for epigenetic inheritance remains elusive. Here we show that parental (H3-H4)2 tetramers are assembled into nucleosomes onto both leading and lagging strands, with a slight preference for lagging strands. The lagging-strand preference increases markedly in budding yeast cells lacking Dpb3 and Dpb4, two subunits of the leading strand DNA polymerase, Pol ε, owing to the impairment of parental (H3-H4)2 transfer to leading strands. Dpb3-Dpb4 binds H3-H4 in vitro and participates in the inheritance of heterochromatin. These results indicate that different proteins facilitate the transfer of parental (H3-H4)2 onto leading versus lagging strands and that Dbp3-Dpb4 plays an important role in this poorly understood process.


Molecular and Cellular Biology | 2017

Both DNA polymerases δ and ε contact active and stalled replication forks differently

Chuanhe Yu; Haiyun Gan; Zhiguo Zhang

ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal.


Molecular and Cellular Biology | 2016

Noncoding Transcription Is a Driving Force for Nucleosome Instability in spt16 Mutant Cells

Jianxun Feng; Haiyun Gan; Matthew L. Eaton; Hui Zhou; Shuqi Li; Jason A. Belsky; David M. MacAlpine; Zhiguo Zhang; Qing Li

ABSTRACT FACT (facilitates chromatin transcription) consists of two essential subunits, Spt16 and Pob3, and functions as a histone chaperone. Mutation of spt16 results in a global loss of nucleosomes as well as aberrant transcription. Here, we show that the majority of nucleosome changes upon Spt16 depletion are alterations in nucleosome fuzziness and position shift. Most nucleosomal changes are suppressed by the inhibition of RNA polymerase II (Pol II) activity. Surprisingly, a small subgroup of nucleosome changes is resistant to transcriptional inhibition. Notably, Spt16 and distinct histone modifications are enriched at this subgroup of nucleosomes. We also report 1,037 Spt16-suppressed noncoding transcripts (SNTs) and found that the SNT start sites are enriched with the subgroup of nucleosomes resistant to Pol II inhibition. Finally, the nucleosomes at genes overlapping SNTs are more susceptible to changes upon Spt16 depletion than those without SNTs. Taken together, our results support a model in which Spt16 has a role in maintaining local nucleosome stability to inhibit initiation of SNT transcription, which once initiated drives additional nucleosome loss upon Spt16 depletion.

Collaboration


Dive into the Haiyun Gan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge