Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hajime Tei is active.

Publication


Featured researches published by Hajime Tei.


Cell | 1997

Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the mPer1 Transcript

Yasufumi Shigeyoshi; Kouji Taguchi; Shuzo Yamamoto; Seiichi Takekida; Lily Yan; Hajime Tei; Takahiro Moriya; Shigenobu Shibata; Jennifer J. Loros; Jay C. Dunlap; Hitoshi Okamura

To understand how light might entrain a mammalian circadian clock, we examined the effects of light on mPer1, a sequence homolog of Drosophila per, that exhibits robust rhythmic expression in the SCN. mPer1 is rapidly induced by short duration exposure to light at levels sufficient to reset the clock, and dose-response curves reveal that mPer1 induction shows both reciprocity and a strong correlation with phase shifting of the overt rhythm. Thus, in both the phasing of dark expression and the response to light mPer1 is most similar to the Neurospora clock gene frq. Within the SCN there appears to be localization of the induction phenomenon, consistent with the localization of both light-sensitive and light-insensitive oscillators in this circadian center.


Journal of Biological Chemistry | 1997

Molecular cloning of a novel human CC chemokine liver and activation-regulated chemokine (LARC) expressed in liver. Chemotactic activity for lymphocytes and gene localization on chromosome 2

Kunio Hieshima; Toshio Imai; Ghislain Opdenakker; Jo Van Damme; Jun Kusuda; Hajime Tei; Yoshiyuki Sakaki; Kiyoshi Takatsuki; Retsu Miura; Osamu Yoshie; Hisayuki Nomiyama

Partial overlapping cDNA sequences likely to encode a novel human CC chemokine were identified from the GenBank Expressed Sequence Tag data base. Using these sequences, we isolated full-length cDNA encoding a protein of 96 amino acid residues with 20-28% identity to other CC chemokines. By Northern blot, this chemokine was mainly expressed in liver among various tissues and strongly induced in several human cell lines by phorbol myristate acetate. We thus designated this chemokine as LARC from iver and ctivation-egulated hemokine. We mapped the LARC gene close to the chromosomal marker D2S159 at chromosome 2q33-q37 by somatic cell and radiation hybrid mappings and isolated two yeast artificial chromosome clones containing the LARC gene from this region. To prepare LARC, we subcloned the cDNA into a baculovirus vector and expressed it in insect cells. The secreted protein started at Ala-27 and was significantly chemotactic for lymphocytes. At a concentration of 1 μg/ml, it also showed a weak chemotactic activity for granulocytes. Unlike other CC chemokines, however, LARC was not chemotactic for monocytic THP-1 cells or blood monocytes. LARC tagged with secreted alkaline phosphatase-(His)6 bound specifically to lymphocytes, the binding being competed only by LARC and not by other CC or CXC chemokines. Scatchard analysis revealed a single class of receptors for LARC on lymphocytes with a Kd of 0.4 nM and 2100 sites/cell. Collectively, LARC is a novel CC chemokine, which may represent a new group of CC chemokines localized on chromosome 2.


Journal of Biological Rhythms | 2004

Temporal Precision in the Mammalian Circadian System: A Reliable Clock from Less Reliable Neurons

Erik D. Herzog; Sara J. Aton; Rika Numano; Yoshiyuki Sakaki; Hajime Tei

The mammalian SCN contains a biological clock that drives remarkably precise circadian rhythms in vivo and in vitro. This study asks whether the cycle-to-cycle variability of behavioral rhythms in mice can be attributed to precision of individual circadian pacemakers within the SCN or their interactions. The authors measured the standard deviation of the cycle-to-cycle period from 7-day recordings of running wheel activity, Period1 gene expression in cultured SCN explants, and firing rate patterns of dispersed SCN neurons. Period variability of the intact tissue and animal was lower than single neurons. The median variability of running wheel and Period1 rhythms was less than 40 min per cycle compared to 2.1 h in firing rate rhythms of dispersed SCN neurons. The most precise SCN neuron, with a period deviation of 1.1 h, was 10 times noisier than the most accurate SCN explant (0.1 h) or mouse (0.1 h) but comparable to the least stable explant (2.1 h) and mouse (1.1 h). This variability correlated with intrinsic period in mice and SCN explants but not with single cells. Precision was unrelated to the amplitude of rhythms and did not change significantly with age up to 1 year after birth. Analysis of the serial correlation of cycle-to-cycle period revealed that approximately half of this variability is attributable to noise outside the pacemaker. These results indicate that cell-cell interactions within the SCN reduce pacemaker noise to determine the precision of circadian rhythms in the tissue and in behavior.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Effects of aging on central and peripheral mammalian clocks

Shin Yamazaki; Marty Straume; Hajime Tei; Yoshiyuki Sakaki; Michael Menaker; Gene D. Block

Circadian organization changes with age, but we do not know the extent to which age-related changes are the result of alterations in the central pacemakers, the peripheral oscillators, or the coupling mechanisms that hold the system together. By using transgenic rats with a luciferase (luc) reporter, we assessed the effects of aging on the rhythm of expression of the Period 1 (Per1) gene in the suprachiasmatic nucleus (SCN) and in peripheral tissues. Young (2 months) and aged (24–26 months) Per1-luc transgenic rats, entrained to light–dark cycles, were killed, and tissues were removed and cultured. Per1-luc expression was measured from 10 tissues. In the SCN, the central mammalian pacemaker, Per1-luc expression was robustly rhythmic for more than 7 weeks in culture. The only difference between SCN rhythmicity in young and old rats was a small but significant age-related shortening of the free-running period. Circadian rhythmicity in some peripheral tissues was unaffected by aging, whereas rhythmicity in other tissues was either phase advanced relative to the light cycle or absent. Those tissues that were arrhythmic could be induced to oscillate by application of forskolin, suggesting that they retained the capacity to oscillate but were not being appropriately driven in vivo. Overall, the results provide new insights into the effects of aging on the mammalian circadian system. Aging seems to affect rhythms in some but not in all tissues and may act primarily on interactions among circadian oscillators, perhaps attenuating the ability of the SCN to drive damped oscillators in the periphery.


The Journal of Neuroscience | 2005

A Calcium Flux Is Required for Circadian Rhythm Generation in Mammalian Pacemaker Neurons

Gabriella B. Lundkvist; Yongho Kwak; Erin K. Davis; Hajime Tei; Gene D. Block

Generation of mammalian circadian rhythms involves molecular transcriptional and translational feedback loops. It is not clear how membrane events interact with the intracellular molecular clock or whether membrane activities are involved in the actual generation of the circadian rhythm. We examined the role of membrane potential and calcium (Ca2+) influx in the expression of the circadian rhythm of the clock gene Period 1 (Per1) within the rat suprachiasmatic nucleus (SCN), the master pacemaker controlling circadian rhythmicity. Membrane hyperpolarization, caused by lowering the extracellular concentration of potassium or blocking Ca2+ influx in SCN cultures by lowering [Ca2+], reversibly abolished the rhythmic expression of Per1. In addition, the amplitude of Per1 expression was markedly decreased by voltage-gated Ca2+ channel antagonists. A similar result was observed for mouse Per1 and PER2. Together, these results strongly suggest that a transmembrane Ca2+ flux is necessary for sustained molecular rhythmicity in the SCN. We propose that periodic Ca2+ influx, resulting from circadian variations in membrane potential, is a critical process for circadian pacemaker function.


Journal of Biological Rhythms | 2008

Reorganization of the suprachiasmatic nucleus coding for day length.

Emiko Naito; Tsuyoshi Watanabe; Hajime Tei; Takashi Yoshimura; Shizufumi Ebihara

In mammals, the suprachiasmatic nucleus (SCN), the circadian pacemaker, receives light information via the retina and functions in the entrainment of circadian rhythms and in phasing the seasonal responses of behavioral and physiological functions. To better understand photoperiod-related alterations in the SCN physiology, we analyzed the clock gene expression in the mouse SCN by performing in situ hybridization and real-time monitoring of the mPer1::luc bioluminescence. Under long photoperiod (LP) conditions, the expression rhythms of mPer1 and Bmal1 in the caudal SCN phase-led those in the rostral SCN; further, within the middle SCN, the rhythms in the ventrolateral (VL)—like subdivision advanced compared with those in the dorsomedial (DM)—like subdivision. The mPer1::luc rhythms in the entire coronal slice obtained from the middle SCN exhibited 2 peaks with a wide peak width under LP conditions. Imaging analysis of the mPer1::luc rhythms in several subdivisions of the rostral, middle, caudal, and horizontal SCN revealed wide regional variations in the peak time in the rostral half of the SCN under LP conditions. These variations were not due to alterations in the waveform of a single SCN neuronal rhythm. Our results indicate that LP conditions induce phase changes in the rhythms in multiple regions in the rostral half of the SCN; this leads to different circadian waveforms in the entire SCN, coding for day length.


Proceedings of the National Academy of Sciences of the United States of America | 2007

LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1.

Shihoko Kojima; Ken Matsumoto; Matsumi Hirose; Miyuki Shimada; Mamoru Nagano; Yasufumi Shigeyoshi; Shin-ichi Hoshino; Kumiko Ui-Tei; Kaoru Saigo; Carla B. Green; Yoshiyuki Sakaki; Hajime Tei

The mammalian molecular clock is composed of feedback loops to keep circadian 24-h rhythms. Although much focus has been on transcriptional regulation, it is clear that posttranscriptional controls also play important roles in molecular circadian clocks. In this study, we found that mouse LARK (mLARK), an RNA binding protein, activates the posttranscriptional expression of the mouse Period1 (mPer1) mRNA. A strong circadian cycling of the mLARK protein is observed in the suprachiasmatic nuclei with a phase similar to that of mPER1, although the level of the Lark transcripts are not rhythmic. We demonstrate that LARK causes increased mPER1 protein levels, most likely through translational regulation and that the LARK1 protein binds directly to a cis element in the 3′ UTR of the mPer1 mRNA. Alterations of mLark expression in cycling cells caused significant changes in circadian period, with mLark knockdown by siRNA resulting in a shorter circadian period, and the overexpression of mLARK1 resulting in a lengthened period. These data indicate that mLARKs are novel posttranscriptional regulators of mammalian circadian clocks.


FEBS Letters | 1998

Identification of the mammalian homologues of the Drosophila timeless gene, Timeless11

Nobuya Koike; Akiko Hida; Rika Numano; Matsumi Hirose; Yoshiuki Sakaki; Hajime Tei

We have identified novel mammalian homologues of a Drosophila clock gene, timeless, and designated them as human TIMELESS1 (hTIM1) and mouse Timeless1 (mTim1), respectively. These genes were mapped by FISH to chromosomal regions 12q12‐13 in human and 10D3 in mouse. The deduced amino acid sequences of hTim1 and mTim1 proteins were 1208 and 1197 amino acids in length and shared 83% identity. Northern blot analysis identified a single transcript of 4.5 kb expressed widely in many tissues examined. Unlike the Drosophila counterpart, the levels of the mTim1 transcript exhibited no prominent circadian oscillation in the mouse brain.


Journal of Biological Rhythms | 2004

Plasticity of circadian behavior and the suprachiasmatic nucleus following exposure to non-24-hour light cycles

Sara J. Aton; Gene D. Block; Hajime Tei; Shin Yamazaki; Erik D. Herzog

Period aftereffects are a form of behavioral plasticity in which the free-running period of circadian behavior undergoes experience-dependent changes. It is unclear whether this plasticity is age dependent and whether the changes in behavioral period relate to changes in the SCN or the retina, 2 known circadian pacemakers in mammals. To determine whether these changes vary with age, Per1-luc transgenic mice (in which the luciferase gene is driven by the Period1 promoter) of different ages were exposed to short (10 h light: 10 h dark, T20) or long (14 h light: 14 h dark, T28) light cycles (T cycles). Recordings of running-wheel activity in constant darkness (DD) revealed that the intrinsic periods of T20 mice were significantly shorter than of T28 mice at all ages. Aftereffects following the shorter light cycle were significantly smaller in mice older than 3 months, corresponding with a decreased ability to entrain to T20. Age did not diminish entrainment or aftereffects in the 28-h light schedule. The behavioral period of pups born in DD depended on the T cycle experienced in utero, showing maternal transference of aftereffects. Recordings of Per1-luc activity from the isolated SCN in vitro revealed that the SCN of young mice expressed aftereffects, but the periods of behavior and SCN were negatively correlated. Enucleation in DD had no effect on behavioral aftereffects, indicating the eyes are not required for aftereffects expression. These data show that circadian aftereffects are an age-dependent form of plasticity mediated by stable changes in the SCN and, importantly, extra-SCN tissues.


Journal of Biological Rhythms | 2009

Ontogeny of Circadian Organization in the Rat

Shin Yamazaki; Tomoko Yoshikawa; Elizabeth W. Biscoe; Rika Numano; Lauren M. Gallaspy; Stacy Soulsby; Evagelia Papadimas; Pinar Pezuk; Susan E. Doyle; Hajime Tei; Yoshiyuki Sakaki; Gene D. Block; Michael Menaker

The mammalian circadian system is orchestrated by a master pacemaker in the brain, but many peripheral tissues also contain independent or quasi-independent circadian oscillators. The adaptive significance of clocks in these structures must lie, in large part, in the phase relationships between the constituent oscillators and their micro- and macroenvironments. To examine the relationship between postnatal development, which is dependent on endogenous programs and maternal/environmental influences, and the phase of circadian oscillators, the authors assessed the circadian phase of pineal, liver, lung, adrenal, and thyroid tissues cultured from Period 1-luciferase (Per1-luc ) rat pups of various postnatal ages. The liver, thyroid, and pineal were rhythmic at birth, but the phases of their Per1-luc expression rhythms shifted remarkably during development. To determine if the timing of the phase shift in each tissue could be the result of changing environmental conditions, the behavior of pups and their mothers was monitored. The circadian phase of the liver shifted from the day to night around postnatal day (P) 22 as the pups nursed less during the light and instead ate solid food during the dark. Furthermore, the phase of Per1-luc expression in liver cultures from nursing neonates could be shifted experimentally from the day to the night by allowing pups access to the dam only during the dark. Peak Per1-luc expression also shifted from midday to early night in thyroid cultures at about P20, concurrent with the shift in eating times. The phase of Per1-luc expression in the pineal gland shifted from day to night coincident with its sympathetic innervation at around P5. Per1-luc expression was rhythmic in adrenal cultures and peaked around the time of lights-off throughout development; however, the amplitude of the rhythm increased at P25. Lung cultures were completely arrhythmic until P12 when the pups began to leave the nest. Taken together, the data suggest that the molecular machinery that generates circadian oscillations matures at different rates in different tissues and that the phase of at least some peripheral organs is malleable and may shift as the organs function changes during development.

Collaboration


Dive into the Hajime Tei's collaboration.

Top Co-Authors

Avatar

Yoshiyuki Sakaki

Toyohashi University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rika Numano

Toyohashi University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gene D. Block

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuya Koike

Kyoto Prefectural University of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge