Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hak-Ling Ma is active.

Publication


Featured researches published by Hak-Ling Ma.


Journal of Clinical Investigation | 2008

IL-22 is required for Th17 cell–mediated pathology in a mouse model of psoriasis-like skin inflammation

Hak-Ling Ma; Spencer C. Liang; Jing Li; Lee Napierata; Tom Brown; Stephen C. Benoit; Mayra Senices; Davinder Gill; Kyriaki Dunussi-Joannopoulos; Mary Collins; Cheryl Nickerson-Nutter; Lynette A. Fouser; Deborah A. Young

Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4(+)CD45RB(hi)CD25(-) cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22-neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell-dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis.


Journal of Immunology | 2003

IL-21 Activates Both Innate and Adaptive Immunity to Generate Potent Antitumor Responses that Require Perforin but Are Independent of IFN-γ

Hak-Ling Ma; Matthew J. Whitters; Richard F. Konz; Mayra Senices; Deborah A. Young; Michael J. Grusby; Mary Collins; Kyriaki Dunussi-Joannopoulos

IL-21 is a key factor in the transition between innate and adaptive immune responses. We have used the cytokine gene therapy approach to study the antitumor responses mediated by IL-21 in the B16F1 melanoma and MethA fibrosarcoma tumor models in mice. Retrovirally transduced tumor cells secreting biologically functional IL-21 have growth patterns in vitro similar to that of control green fluorescent protein-transduced cells, but are completely rejected in vivo. We show that IL-21 activates NK and CD8+ T cells in vivo, thus mediating complete rejection of poorly immunogenic tumors. Rejection of IL-21-secreting tumors requires the presence of cognate IL-21R and does not depend on CD4+ T cell help. Interestingly, perforin, but not IFN-γ or other major Th1 and Th2 cytokines (IL-12, IL-4, or IL-10), is required for the IL-21-mediated antitumor response. Moreover, IL-21 results in 50% protection and 70% cure of nonimmunogenic tumors when given before and after tumor challenge, respectively, in C57BL/6 mice. We conclude that IL-21 immunotherapy warrants clinical evaluation as a potential treatment for cancer.


Journal of Investigative Dermatology | 2011

Inter-Regulation of Th17 Cytokines and the IL-36 Cytokines In Vitro and In Vivo: Implications in Psoriasis Pathogenesis

Yijun Carrier; Hak-Ling Ma; Hilda E. Ramon; Lee Napierata; Clayton Small; Margot O'Toole; Deborah A. Young; Lynette A. Fouser; Cheryl Nickerson-Nutter; Mary Collins; Kyri Dunussi-Joannopoulos; Quintus G. Medley

Accumulating evidence indicates that IL-1 family members and Th17 cytokines have a pathogenic role in psoriasis. We investigated the regulatory interactions of the IL-1-like IL-36 cytokine family and the Th17 cytokines in the context of skin inflammation. We observed increased gene expression of all three IL-36 cytokines in a Th17-dominant psoriasis-like animal model. The induction was downregulated by neutralizing IL-22. Expression of the IL-36s was also induced in cultured primary human keratinocytes (KC) by IL-17A and tumor necrosis factor (TNF)-α, and IL-22 synergized with IL-17A and TNF-α. Furthermore, the IL-36s directly induced their own expression and the production of proinflammatory mediators (TNF-α, IL-6, IL-8) in KC. These functions were markedly enhanced with the addition of IL-17A or TNF-α to the cultures. Similarly, IL-36α and IL-36β augmented IL-17A-mediated induction of antibacterial peptides. Finally, we show that the increased gene expression of IL-36 correlated with Th17 cytokines in the lesions of psoriatic patients. Our results indicate that the IL-36 cytokines are not only regulated by Th17 cytokines, but that they themselves can regulate the expression and enhance the function of Th17 cytokines. We propose that a feedback loop between the IL-36 and Th17 cytokines is involved in driving cytokine expression in psoriatic tissues.


Journal of Immunology | 2010

IL-22 Induces an Acute-Phase Response

Spencer C. Liang; Cheryl Nickerson-Nutter; Debra D. Pittman; Yijun Carrier; Debra G. Goodwin; Kathleen M. Shields; Andre-Jean Lambert; Scott H. Schelling; Quintus G. Medley; Hak-Ling Ma; Mary Collins; Kyriaki Dunussi-Joannopoulos; Lynette A. Fouser

IL-22 is made by a unique set of innate and adaptive immune cells, including the recently identified noncytolytic NK, lymphoid tissue-inducer, Th17, and Th22 cells. The direct effects of IL-22 are restricted to nonhematopoietic cells, its receptor expressed on the surface of only epithelial cells and some fibroblasts in various organs, including parenchymal tissue of the gut, lung, skin, and liver. Despite this cellular restriction on IL-22 activity, we demonstrate that IL-22 induces effects on systemic biochemical, cellular, and physiological parameters. By utilizing adenoviral-mediated delivery of IL-22 and systemic administration of IL-22 protein, we observed that IL-22 modulates factors involved in coagulation, including fibrinogen levels and platelet numbers, and cellular constituents of blood, such as neutrophil and RBC counts. Furthermore, we observed that IL-22 induces thymic atrophy, body weight loss, and renal proximal tubule metabolic activity. These cellular and physiological parameters are indicative of a systemic inflammatory state. We observed that IL-22 induces biochemical changes in the liver including induction of fibrinogen, CXCL1, and serum amyloid A that likely contribute to the reported cellular and physiological effects of IL-22. Based on these findings, we propose that downstream of its expression and impact in local tissue inflammation, circulating IL-22 can further induce changes in systemic physiology that is indicative of an acute-phase response.


Arthritis & Rheumatism | 2010

Tumor necrosis factor α blockade exacerbates murine psoriasis‐like disease by enhancing Th17 function and decreasing expansion of Treg cells

Hak-Ling Ma; Lee Napierata; Nancy Stedman; Stephen C. Benoit; Mary Collins; Cheryl Nickerson-Nutter; Deborah A. Young

OBJECTIVE Patients with psoriasis and psoriatic arthritis respond well to tumor necrosis factor alpha (TNFalpha) blockers in general; however, there is now mounting evidence that a small cohort of patients with rheumatoid arthritis who receive TNFalpha blockers develop psoriasis. This study was undertaken to explore the mechanisms underlying TNFalpha blockade-induced exacerbation of skin inflammation in murine psoriasis-like skin disease. METHODS Skin inflammation was induced in BALB/c scid/scid mice after they received CD4+CD45RB(high)CD25- (naive CD4) T cells from donor mice. These mice were treated with either anti-interleukin-12 (anti-IL-12)/23p40 antibody or murine TNFRII-Fc fusion protein and were examined for signs of disease, including histologic features, various cytokine levels in the serum, and cytokine or FoxP3 transcripts in the affected skin and draining lymph node (LN) cells. In a separate study, naive CD4+ T cells were differentiated into Th1 or Th17 lineages with anti-CD3/28 magnetic beads and appropriate cytokines in the presence or absence of TNFalpha. Cytokine gene expression from these differentiated cells was also determined. RESULTS Neutralization of TNFalpha exacerbated skin inflammation and markedly enhanced the expression of the proinflammatory cytokines IL-1beta, IL-6, IL-17, IL-21, and IL-22 but suppressed FoxP3 expression in the skin and reduced the number of FoxP3-positive Treg cells in the draining LNs. TNFalpha also demonstrated a divergent role during priming and reactivation of naive T cells. CONCLUSION These results reveal a novel immunoregulatory role of TNFalpha on Th17 and Treg cells in some individuals, which may account for the exacerbation of skin inflammation in some patients who receive anti-TNF treatments.


Toxicologic Pathology | 2012

Cytokine Pathways in Allergic Disease

Cara Williams; Saifur Rahman; Cedric Hubeau; Hak-Ling Ma

Cytokines are critical in allergic intercellular communication networks, and they contribute to disease pathology through the recruitment and activation of pro-inflammatory leukocytes and in chronic disease to pro-fibrotic/remodeling events. Th2 cytokines predominate primarily in mild to moderate allergic asthma, although clinical trials with inhibitors of IL-4 and IL-5 have not provided the robust efficacy observed in animal models of allergy. These results not only highlight the complexity of allergic disease, but they also point to the importance of other cytokine networks in driving pathology. The heterogeneous nature of the disease is emphasized by the fact that the Th2/Th1/Th17 cytokine balance can be influenced by the initiating allergic trigger. For example, the house dust mite allergen Der p 2 mimics the activity of MD-2 by presenting lipopolysaccharide to Toll-like receptor-4 for the activation of inflammatory genes including innate-type cytokines. Here we discuss the functions of the novel cytokine players, thymic stromal lymphopoetin (TSLP), IL-33, IL-25, and IL-9 and delineate nonredundant roles for IL-4 and IL-13 in allergic disease. Persistent efforts in the characterization of these and other cytokine networks will be essential for understanding the complex pathogenic mechanisms that underpin allergic disease and for guiding targeted therapeutic interventions.


Journal of Experimental Medicine | 2015

Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity

Paul Giacomin; Mario Noti; Lisa C. Osborne; Mark C. Siracusa; Theresa Alenghat; Bigang Liu; Kelly A. McCorkell; Amy E. Troy; Gregory D. Rak; Yinling Hu; Michael J. May; Hak-Ling Ma; Lynette A. Fouser; Gregory F. Sonnenberg; David Artis

Expression of IKKα in intestinal epithelial cells promotes IL-22 production by group 3 innate lymphoid cells, and this axis is essential for defense against Citrobacter rodentium infection and to limit intestinal inflammation in response to DSS treatment.


Inflammation and Allergy - Drug Targets | 2011

The Pathology and Immunology of Atopic Dermatitis

Saifur Rahman; Mary Collins; Cara Williams; Hak-Ling Ma

Atopic dermatitis (AD) is a pruritic chronic inflammatory disease of the skin that is triggered by an underlying complicated interplay between the genetics of the individual and stimulation by allergens. Patients with AD demonstrate compromised barrier function that leads to activation of keratinocytes and immune cells which favor a strong Th2 bias. As a result of this immunological bias such patients also suffer from secondary pathogenic infections. A wide array of cytokines and chemokines interact to yield symptoms characteristic of AD. In addition, the involvement of different immunological cell types compounds our difficulty in understanding its immunopathogenesis. The use of various mouse models and transgenics has allowed us to intricately examine the functioning of the various molecules identified to play a role in AD. Such mouse models have also aided in the testing and development of various therapeutics for AD. This review is focused on examining the various factors contributing to the pathogenesis and exacerbation of AD as well as current treatments for AD. There is scope for improving the therapy of AD patients and thereby allowing them a better quality of life.


Journal of Immunology | 2000

Bovine and Human Insulin Activate CD8+-Autoreactive CTL Expressing Both Type 1 and Type 2 Cytokines in C57BL/6 Mice

Hak-Ling Ma; Yong Ke; Qingqin Li; Judith A. Kapp

CD8+ T cells down-regulate a variety of immune responses. For example, porcine and human insulin do not stimulate Abs in C57BL/6 mice because CD8+ T cells inhibit CD4+ helper T cells. By contrast, bovine insulin induces Ab in C57BL/6 mice, and removal of CD8+ T cells does not alter this response. This raises the question of whether porcine, but not bovine, insulin activates CD8+ T cells or whether both insulins activate CD8+ T cells but CD4+ helper T cells are differentially inhibited by them. In this study, we show that insulin-specific CD8+ CTL can be cultured from C57BL/6 mice primed with either bovine or human insulin in CFA. Thus, exogenous Ags, besides OVA, induce CD8+ CTL when administered in an adjuvant, suggesting this is a typical response. These CTL are H-2Kb restricted and produce IL-5, IL-10, IFN-γ, and small amounts of IL-4, which is distinct from IFN-γ and TNF-α that are typically secreted by virus-specific CTL. Moreover, the CTL primed with either bovine or human insulin recognize an A-chain peptide that is identical to the mouse insulin sequence. That foreign proteins, which are closely related to self-proteins, activated autoreactive, CD8+ T cells in vivo is a novel finding. It raises the possibility that self-reactive CTL may be activated by cross-reacting Ags and once activated they might participate in autoimmunity. These results also suggest that down-regulation of insulin-specific responses by autoreactive CD8+ T cells is most likely due to the differential sensitivity of bovine and human insulin-specific CD4+ T cells.


Journal of clinical & cellular immunology | 2013

Attenuating Janus Kinases (JAK) by Tofacitinib Effectively Prevented Psoriasis Pathology in Various Mouse Skin Inflammation Models

Hak-Ling Ma; Katherine Masek-Hammerman; Susan Fish; Lee Napierata; Eva Nagiec; Martin Hegen; James D. Clark

Background: Tofacitinib is a Janus kinase (JAK) inhibitor that preferentially inhibits signaling by JAK1 and JAK3 that blocks the signaling of type I interferons, IL-6 as well as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Together these cytokines are important to lymphocyte function and therefore regulate multiple aspects of the immune response. Tofacitinib has demonstrated efficacy in clinical trials of various autoimmune diseases including psoriasis.Objectives: To understand the mechanisms of action of tofacitinib in improving psoriasis.Methods: Tofacitinib was evaluated in several IL-23/Th17 pathway-dependent, psoriasis-like skin inflammation models.Results: We demonstrate that similar to mice that received mouse IL-12/23 p40 antibody (anti-p40), treatment with tofacitinib also reduced clinical signs of skin inflammation. Histologic analysis confirmed the clinical data: skin inflammation, the number of cells expressing pSTAT3 were significantly decreased in affected skin of mice treated with tofacitinib and with anti-p40 Ab relative to vehicle/isotype-treated mice. Gene expression analysis of the affected skin revealed that tofacitinib also significantly down-modulated various pro-inflammatory mediators including CXCL10, IL-1β, IL-6, IL-7, IL-17A, IL-22 and S100A8.Conclusion: These results suggest the mechanism of action of tofacitinib is likely due to its ability to block multiple cytokines and attenuate immune response that contribute to the positive clinical efficacy in psoriasis.

Collaboration


Dive into the Hak-Ling Ma's collaboration.

Top Co-Authors

Avatar

Mary Collins

University College London

View shared research outputs
Top Co-Authors

Avatar

Yijun Carrier

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Spencer C. Liang

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge