Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Håkan Edlund is active.

Publication


Featured researches published by Håkan Edlund.


Cellular and Molecular Life Sciences | 1995

Sex pheromone of the pine sawfly Diprion pini (Hymenoptera: Diprionidae) : Chemical identification, synthesis and biological activity

Gunnar Bergström; Ann-Britt Wassgren; Olle Anderbrant; Jonas Fägerhag; Håkan Edlund; Erik Hedenström; Hans-Erik Högberg; Claude Géri; M. A. Auger; Martti Varama; Bill S. Hansson; Jan Löfqvist

The main component of the sex pheromone secretion of femaleDiprion pini L. (Hymenoptera: Diprionidae) from insects collected both in Finland and in France has been identified as athreo-3,7-dimethyl-2-tridecanol (8 ng per female) stereoisomer by GC-MS and synthesis. The secretion also contains lower and higher homologues in small amounts (1–4% of the main component). Combined gas chromatographic-electroantennographic detection showed activity in both natural and esterified extracts (acetates and propionates); the esters of the main component gave the largest responses. The acetates and propionates of the eight stereoisomers of 3,7-dimethyl-2-tridecanol were synthesized from enantiomerically highly enriched (>99% ee) building blocks. The stereochemistry of the main component was established to be (2S,3R,7R)-3,7-dimethyl-2-tridecanol by GC analysis of the natural material. It was purified by liquid chromatography prior to the GC analysis of both its pentafluorobenzoates and its isopropylcarbamates on a non-chiral polar column (ECD) and a chiral column (NPD), respectively. Field tests demonstrated that both the acetate and propionate of the main component (100 μg of each applied on cotton roll dispensers) were active in attracting males, with or without the presence of several of the minor compounds. Experiments with smaller amounts of the acetate and the propionate (1 μg in France and 50 μg in Finland) demonstrated that the propionate was more active than the acetate, and that it also caught more males than a blend of the two compounds.


Journal of Insect Physiology | 1995

Electrophysiological and morphological characteristics of pheromone receptors in male pine sawflies, Diprion pini (Hymenoptera, Diprionidae), and behavioral response to some compounds

Olle Anderbrant; Bill S. Hansson; Eric Hallberg; Claude Géri; Martti Varama; Erik Hedenström; Hans-Erik Högberg; Jonas Fägerhag; Håkan Edlund; Ann-Britt Wassgren; Gunnar Bergström; Jan Löfqvist

Electrophysiological And Morphological-Characteristics Of Pheromone Receptors In Male Pine Sawflies, Diprion Pini (Hymenoptera, Diprionidae), And Behavioral-Response To Some Compounds


Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2003

Bile salts form lyotropic liquid crystals

Heinz Amenitsch; Håkan Edlund; Ali Khan; Eduardo F. Marques; C. La Mesa

A reinvestigation of the phase diagrams relative to some conjugated and non-conjugated bile salts in water has demonstrated the formation of lyotropic liquid crystalline phases, in contradiction with generally accepted statements. The phase behaviour is complex and the phase diagrams are unusual, compared to most surfactants and lipids. In particular, coexistence of liquid crystalline phases with crystals has been observed. The formation of liquid crystalline phases requires very long equilibration times and the thermal stability of the lyotropic phases is moderate. The observed structure is tentatively assumed to be of the reverse hexagonal type. Structural relations with currently accepted models for the organisation of bile salts into micelles and solid form have been found.


Catalysis Today | 1994

Biocatalysis as a useful tool in pheromone synthesis. Enantiomerically pure building blocks from baker's yeast reductions and enzyme catalysed resoluti

Hans-Erik Högberg; Per Berglund; Håkan Edlund; Jonas Fägerhag; Erik Hedenström; Mårten Lundh; Ove Nordin; Stefano Servi; Carin Vörde

Biocatalytical methods are presented which provide useful building blocks for pheromone synthesis. Examples of the utility of this approach are the preparation of building blocks for the synthesis ...


Langmuir | 2014

Metal Ion Coordination, Conditional Stability Constants, and Solution Behavior of Chelating Surfactant Metal Complexes

Ida Svanedal; Susanne Boija; Ann Almesåker; Gerd Persson; Fredrik Andersson; Erik Hedenström; Dan Bylund; Magnus Norgren; Håkan Edlund

Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Jobs plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory.


Langmuir | 2014

Interactions in mixed micellar systems of an amphoteric chelating surfactant and ionic surfactants.

Ida Svanedal; Gerd Persson; Magnus Norgren; Håkan Edlund

Mixtures of ionic surfactants and the chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of interactions in mixed micellar systems. The amphoteric 4-C12-DTPA is zwitterionic with a negative net charge at the studied pH levels. The investigated ionic surfactants were the cationic dodecyltrimethylammonium chloride (DoTAC), the anionic sodium dodecyl sulfate (SDS), and the zwitterionic dimethyldodecylamine-N-oxide (DDAO). The surfactants all have the same hydrophobic chain lengths, and the results are evaluated in terms of headgroup interactions. 4-C12-DTPA interacts with different ionic surfactants by accepting or donating protons to the aqueous solution to increase the attractive interactions between the two surfactants; i.e., the protonation equilibrium of 4-C12-DTPA is shifted in different directions depending on whether there are predominant repulsions between positively or negatively charged groups in the mixed micelles. This was monitored by measuring pH vs concentration in the mixed systems. By measuring the pH, it was also possible to study the shift in the protonation equilibrium at increasing concentration, as the composition in the micelles approaches the composition in the total solution. Following the approach of Rubinghs regular solution theory, the interaction parameter β for mixed micelle formation was calculated from the cmc values determined by NMR diffusometry. Synergism in mixed micelle formation and negative β parameters were found in all of the investigated systems. As expected, the most negative β parameter was found in the mixture with DoTAC, followed by DDAO and SDS. The self-diffusion in the 4-C12-DTPA/DoTAC system was also discussed. The self-diffusion coefficient vs concentration plots show two distinctly different curves, depending on the surfactant that is present in excess.


Langmuir | 2013

Anomalies in Solution Behavior of an Alkyl Aminopolycarboxylic Chelating Surfactant

Ida Svanedal; Gerd Persson; Magnus Norgren; Håkan Edlund

The solution behavior of a DTPA (diethylenetriamine pentaacetic acid)-based chelating surfactant, 4-C12-DTPA, has been studied by tensiometry and NMR diffusometry. In the absence of metal ions, the eight donor atoms in the headgroup are titrating, and the charge of the headgroup can thus be tuned by altering the pH. 4-C12-DTPA changes from cationic at very low pH, over a number of zwitterionic species as the pH is increased, and eventually becomes anionic at high pH. Around the isoelectric point, the chelating surfactant precipitated. The solution properties, studied above the solubility gap, were found strongly pH dependent. When increasing the amount of negative charges in the headgroup, by increasing the pH, the adsorption efficiency was reduced and the cmc was increased. An optimum in surface tension reduction was found at pH 5, due to a proper balance between protonated and dissociated groups. Anomalies between surface tension measurements and NMR diffusometry in determination of cmc revealed a more complex relation between surface tension, surface coverage, and cmc than usually considered, which is not in line with the common interpretation of the Gibbs adsorption equation. At some of the investigated pH levels, measurements of bulk pH could confirm the location of cmc, due to the increased protonation of micelles compared to monomers in solution. The adsorption of monomers to the air-water interface showed unusually slow time dependence, evident from decreasing surface tension for several hours. This is explained by rearrangements of the large head groups to reduce the headgroup area and increase the packing parameter.


Langmuir | 2014

Headgroup interactions and ion flotation efficiency in mixtures of a chelating surfactant, different foaming agents, and divalent metal ions.

Ida Svanedal; Susanne Boija; Magnus Norgren; Håkan Edlund

The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubinghs regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.


Journal of Mass Spectrometry | 2014

Determination of conditional stability constants for some divalent transition metal ion-EDTA complexes by electrospray ionization mass spectrometry

Susanne Boija; Ann Almesåker; Erik Hedenström; Dan Bylund; Håkan Edlund; Magnus Norgren

Conditional stability constants of coordination complexes comprising divalent transition metals, Cu(2+), Ni(2+), Zn(2+), Co(2+), and ethylenediaminetetraacetic acid (EDTA) were determined utilizing electrospray ionization mass spectrometry. The deviation of signal response of a reference complex was monitored at addition of a second metal ion. The conditional stability constant for the competing metal was then determined through solution equilibria equations. The method showed to be applicable to a system where Co(2+) and Zn(2+) competed for EDTA at pH 5. When Cu(2+) and Ni(2+) competed for EDTA, the equilibrium changed over time. This change was shown to be affected in rate and size by the type of organic solvent added. In this work, 30% of either methanol or acetonitrile was used. It was found that if calibration curves are prepared for both metal complexes in solution and the measurements are repeated with sufficient time space, any change in equilibrium of sample solutions will be discovered.


Scientific Reports | 2013

Soap-film coating: High-speed deposition of multilayer nanofilms

Renyun Zhang; Henrik Andersson; Mattias Andersson; Britta Andres; Håkan Edlund; Per Edström; Sverker Edvardsson; Sven Forsberg; Magnus Hummelgård; Niklas Johansson; Kristoffer Karlsson; Hans-Erik Nilsson; Magnus Norgren; Martin Olsen; Tetsu Uesaka; Thomas Öhlund; Håkan Olin

The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology.

Collaboration


Dive into the Håkan Edlund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge